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Preface

A request for field measurement and model investigations of Kahului Harbor,
Maui, HI, was initiated by the U.S. Army Engineer Division, Pacific Ocean
(POD), in coordination with the Harbors Division, Department of Transportation,
State of Hawaii (HDOT). Authorization for the U.S. Army Engineer Waterways
Experiment Station (WES), Coastal Engineering Research Center (CERC), to
perform the study was subsequently granted by Headquarters, U.S. Army Corps
of Engineers. Field measurements were collected during the period September
1993 through March 1995 and numerical model tests were conducted at WES
from September 1994 to April 1996. The physical modeling component of the
investigation, which is generally used to determine the final recommended design
of harbor modifications, was postponed because of budget limitations.

Messrs. Stanley Boc, POD, and Fred Nunes, HDOT, oversaw progress of the
study. Meetings at WES at critical points in the study were the mid-study model
review conference on 11-12 July 1995 and the wrap-up conference on
28-29 February 1996.

Mr. Dennis G. Markle, Chief, Wave Processes Branch, Wave Dynamics
Division, was the principal WES point of contact for the study. Mr. David D.
McGehee, Prototype Measurement and Analysis Branch, Engineering Develop-
ment Division, was responsible for the field measurement program. Ms. Willie
Ann Brandon and Dr. Jon M. Hubertz, both of the Coastal Oceanography Branch
(COB), Research Division (RD), CERC, conducted the wave climate analysis
portion of the study. Dr. Edward F. Thompson and Ms. Lori L. Hadley, both of
COB, performed some additional analysis of the field data, conducted the
numerical harbor modeling, and assembled this report. Ms. Rebecca L. Russell,
COB, assisted with data processing and analysis. Direct supervision was
provided by M. Markle and Dr. Martin C. Miller, Chief, COB. General
supervision was provided by Mr. H. Lee Butler, Chief, RD; Mr. Charles C.
Calhoun, Jr., Assistant Director, CERC; and Dr. James R. Houston, Director,
CERC.

Special appreciation is extended to Ms. Juliana Thomas and Messrs. David
Castel and Joseph Keefe, Center for Coastal Studies, Scripps Institution of
Oceanography, for not only providing field wave parameters and spectra but also
modifying the methodology for calculating peak wave period to provide more
accurate swell estimates. Drs. Mark A. Merrifield and Michele S. Okihiro,




Department of Ocean Engineering, University of Hawaii at Manoa, investigated
the correlation between deep ocean wave buoy measurements and long wave
energy incident to Kahului Harbor. Ms. Jennifer Chen, HDOT, provided
assistance with harbor plan graphics.

At the time of publication of this report, Dr. Robert W. Whalin was Director
of WES. COL Bruce K. Howard, EN, was Commander.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.



Conversion Factors, Non-Sl to
Sl Units of Measurement

Non-SI units of measurement can be converted to SI (metric) units as follows:

Mulitiply By To Obtain
degrees (angle) 0.01745329 radians
feet 0.3048 meters
miles (U.S. nautical) 1.852 kilometers
tons (2,000 pounds, mass) 907.1847 kilograms

xi
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Summary

Introduction

Because of present and projected commercial activities in Kahului Harbor, the
needs and concerns of community, private business, and government have been
reviewed under the state of Hawaii planning process. New berths for barge and
passenger ship operations are an expected future requirement. Space for related
land-based facilities is needed. Deepening of main harbor areas from 35 ft to 38
ft is also anticipated.

The new facilities would require expansion of harbor operations into areas not
presently used, particularly the western part of the harbor. Field wave
measurements and numerical (computer) model studies to evaluate the technical
feasibility of alternative modifications were conducted from September 1993 to
May 1996 by the U.S. Army Corps of Engineers at the U.S. Army Engineer
Waterways Experiment Station, Coastal Engineering Research Center,
Vicksburg, MS. Eleven alternative harbor plans were studied along with the
existing harbor (see table that follows).

Study Results

Harbor basin

Wind waves and swell in the harbor are affected by distance from the
entrance, directional exposure, and bottom depths. Wave approach directions at
the entrance are consistently aimed at the southwest part of the harbor. Facilities
in the western harbor and located closer to the entrance (as the extension of
Pier 1) are prone to increased wind wave and swell conditions. A stub added to
the west breakwater tip in some plans shelters the western harbor from wind
waves and swell. Changes in the western harbor have no significant impact on
wind waves and swell at existing facilities in the eastern harbor.



Summary of Kahului Harbor Plans and Wave Response

Harbor Wind Waves Surge See

Plan Distinctive Features and Swell Oscillations Remarks Figure

1 Slip cut in coral stockpile; 2 3 Large oscillations at 3
Concept C for barge pier passenger pier

2 Slip cut in coral stockpile; 2 3 Large oscillations at 4
Concept 12 for barge pier passenger pier

3a Notch cut in coral stockpile; 2 2 5
No breakwater stub

3b Notch cut in coral stockpile; 1 1 5
600-ft breakwater stub

3c Notch cut in coral stockpile; 1 1 5
1,000-ft breakwater stub

4da Adjacent to coral stockpile; 3 1 High wind waves and swell 6
No breakwater stub

4b Adjacent to coral stockpile; 2 1 6
600-ft breakwater stub

4c Adjacent to coral stockpile; 1 1 6
1,000-ft breakwater stub

5 Fill area in SW harbor 2 2 Large oscillations at barge 7

and passenger piers

6 Same as 4b but with 38-ft depth 2 1 8

7 Fully utilized harbor 2 2 Large oscillations at barge 9
(combination of 4b and 5) and passenger piers

1 General indicator of plan performance: 1 = equal or better than existing facilities

2 = somewhat worse than existing facilities
3 = much worse than existing facilities

All of the proposed harbor plans have comparable or increased surge (or
oscillation) activity relative to the existing harbor. The dredged access areas,
straight piers, and corners added in the alternative plans tend to increase surge
motions. Changes in the western harbor can potentially worsen surge conditions
at the existing commercial piers.

Ship surge response

Kahului Harbor experiences natural resonance modes, which cause standing
waves in the harbor. These waves are commonly present in the harbor, but their
height varies considerably according to incident wave conditions. High standing
waves can cause operational difficulties such as excessive ship motion and high
mooring line forces. Areas of greatest horizontal motion (nodal areas) are most
likely to experience problems. Possible actions to remedy effects of the surge
include proper ballasting as ships are offloaded, adjustment to mooring line
tensions, and modifications to mooring line configuration.
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Piers 1-3

Wind wave and swell activity at existing Piers 1-3 is not appreciably changed
in any of the alternative plans. The proposed Pier 1 extension will experience an
increase in wave heights with closer proximity to the entrance. Surge level is
increased in some plans. A nodal area between the seaward end of Pier 2 and the
middle of Pier 1 is visible in all plans, including the existing harbor. The Pier 1
extension will likely be in the nodal area for the 176- to 178-sec resonant
oscillation.

Barge facility

Wind waves and swell at the recommended Concept 12 configuration along
the southwest side of Pier 2 are similar to the more seaward parts of existing
Piers 1 and 2. Surge activity is substantially lower than at existing facilities
except in plans which include a landfill in the southwest harbor.

Passenger ship pier

Wind wave and swell protection varies greatly between plans, ranging from
better than any existing facilities to much worse. Surge activity is similar to or
higher than the present Pier 1.

Boat ramp

Most plans have the added benefit of helping to shelter the boat ramp from
wind waves and swell. Overall surge levels are generally similar to the existing
harbor except in Plan 5.

Model performance

The final numerical model behaved realistically when compared to field
observations at Kahului Harbor. There is a high level of confidence in the
predictions made by the model, especially those involving comparisons between
harbor alternatives.

Limitations

No instances of operational problems inside the harbor were reported during
the measurement studies, although they are known to have occurred in the past.
(One episode of hazardous waves at the entrance, resulting in harbor closing,
was recorded.) Such events would have been very helpful in identifying more
clearly the processes and threshold wave heights which deter specific operations
in the harbor. They would also have aided the evaluation of alternative plans.
There are inherent limits on the numerical model representations of the harbor
response. Wave climate information used to evaluate each plan was based
mainly on 11 months of field data. Ship and mooring system responses, the
ultimate operational concern, were not explicitly studied.



Recommendations

Recommended modifications to Kahului Harbor include a 200-ft extension to
Pier 1, dredging and a new T-pier for fuel barges between Piers 1 and 3, a new
barge facility along the south side of Pier 2, and a new passenger ship pier
located in the western harbor. Variations to the alternative plans studied may
include design changes for improved performance. For example, the passenger
ship facility in Plans 5 and 7 could be pile-supported rather than solid to reduce
resonances.

Results of this study should be combined with operational experience at
existing facilities to define a most-promising general plan. A final optimized
plan should be determined with the aid of a physical model. The numerical
model should be validated against the physical model studies to ensure that the
final plan is free of problem surge response in existing pier areas and new
facilities. Effects of future modifications to the harbor should be evaluated using
the validated numerical model.




1 Introduction

Background

Kahului Harbor is the only deep-draft harbor on the Island of Maui and the
busiest port in Hawaii outside of the Island of Oahu. The harbor is approxi-
mately 94 miles' southeast of Honolulu and is conveniently located on Maui’s
north shore (Figure 1).

The harbor is exposed to wind and waves from the north and northeast. The
northwest end of Maui shelters the harbor from waves arriving from the
northwest. The harbor is protected by two large breakwaters. High energy
waves generated by intense winter storms in the north Pacific Ocean routinely
attack the breakwaters. Hurricanes can also create large waves incident to the
harbor. The breakwaters have a long history of construction and repair (Markle
and Boc 1994; Sargent, Markle, and Grace 1988). Breakwaters are armored with
molded concrete units of up to 35 tons on the trunk and 50 tons on the head. The
harbor entrance is a 660-ft opening between the breakwaters.

Commercial piers are located in the southeast part of the harbor. Piers are
used by a variety of vessels including barges, container ships, passenger cruise
ships, and fishing vessels. Pier 1 accommodates the larger overseas vessels and
barges. Water depth in the Federal entrance channel, harbor basin, and commer-
cial pier areas is 35 ft.

Two canoe clubs are located along the shore immediately southwest of Pier 2.
A large coral stockpile has been placed inside the harbor, adjacent to the west
breakwater. This area, under the jurisdiction of the County of Maui, is being
considered for park development. A public boat ramp is located near the land-
ward end of the stockpile (Figure 2). The southern shore of the harbor, between
the boat ramp and canoe clubs, includes a revetment along Kahului Beach Road
and several rock groins further east.

Because of Kahului Harbor’s size and importance (both recreational and
commercial), the Harbors Division, Department of Transportation, State of

1 A table of factors for converting non-SI units of measurement to SI units is presented on page xi.
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Hawaii (HDOT), has devoted special care to long-range planning. Plans and
concerns are described in the 2010 Master Plan for Kahului Harbor produced by
the State of Hawaii in 1994. A key concern is the possibility for expansion of
the harbor in concert with projected increases in population and economic activ-
ity. Wave activity at the existing piers during heavy northerly swells is also a
concern.

Study Approach

The study described in this report was performed by the U.S. Army Engineer
Waterways Experiment Station (WES), Coastal Engineering Research Center
(CERC), in support of the 2010 Master Plan for Kahului Harbor. The approach
consisted of the following components:

a. Collect and analyze field wave data.
b. Relate field data to long-term wave climate.
c¢. Use field data to calibrate and validate a numerical wave model.

d. Use the numerical model to investigate alternative harbor modification
plans.

Field wave gages were installed outside the harbor and at four locations inside
the harbor. Locations for the harbor gages were selected with the aid of a pre-
liminary numerical model study of harbor oscillations (Okihiro et al. 1994). Two
events of special interest occurred during the measurement program. Intense
wave activity causing closure of the harbor occurred on 14-15 March 1994. A
sizeable (but not damaging) tsunami event due to an earthquake off the coast of
Japan occurred on 4 October 1994. The field wave measurement portion of the
study is described in Chapter 2.

Long-term wind wave and swell climate was investigated primarily with
numerical hindcast information covering a period of 20 years. Statistics from the
gage outside the harbor were evaluated relative to the long-term climate. The
wave climate study is presented in Chapter 3.

A numerical wave model was set up to cover the entire harbor and the area
outside the harbor extending to the wave gage. The model was tested, calibrated,
and validated, mainly using the field data. Nine alternative harbor plans were
defined as part of the mid-study model review conference, with provisions for
two additional plans to be specified after evaluating the initial plans. Thus the
study included a total of eleven plans and the existing harbor. All plans included
the following features:

a. A 200-ft extension of Pier 1 toward the harbor entrance.

b. A dredged area between Piers 1 and 3 to 35-ft depth to accommodate fuel
barges.

Chapter 1 Introduction
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Each plan includes provisions for a new passenger vessel area on the west side of
the harbor and a new barge facility on the south side of Pier 2. Appropriate
dredging is incorporated into the plans to provide 35-ft depth for passenger ves-
sels and 25-ft depth for barges. Special features of each plan are:

a. Plan 1 (Figure 3). Slip cut into coral stockpile to accommodate passenger
ships; fill south of Pier 2 to provide barge pier oriented nearly north/south
(referred to as Concept C in HDOT planning documents).

b. Plan 2 (Figure 4). Slip cut into coral stockpile to accommodate passenger
ships; fill south of Pier 2 to provide barge pier parallel to Pier 2 (referred to
as Concept 12 in HDOT planning documents).

c. Plans 3a, 3b, and 3¢ (Figure 5). Notch cut into coral stockpile to accom-
modate passenger ships; protective stub aligned with entrance channel
added to end of west breakwater in Plans 3b and 3¢ with length of 600 ft
(Plan 3b), and 1,000 ft (Plan 3c); fill south of Pier 2 to provide barge pier
parallel to Pier 2.

d. Plans 4a, 4b, and 4c (Figure 6). Passenger ship pier located adjacent to
existing coral stockpile; protective stub added to end of west breakwater in
Plans 4b and 4¢ with length of 600 ft (Plan 4b), and 1,000 ft (Plan 4c); fill
south of Pier 2 to provide barge pier parallel to Pier 2.

e. Plan 5 (Figure 7). 800-ft by 800-ft fill area added in southwest area of
harbor to accommodate passenger ships; fill south of Pier 2 to provide
barge pier parallel to Pier 2.

f. Plan 6 (Figure 8). Identical to Plan 4b except 35-ft project depths dredged
to 38 ft.

8. Plan 7 (Figure 9). Combination of Plans 4b and 5 with 35-ft project depth
areas dredged to 38 ft and realignment of passenger ship pier along south-
east side of fill area. This plan represents a fully utilized harbor.

Development of the numerical model and test procedures is described in
Chapter 4.

Response of the existing harbor to waves was studied using field data and
numerical model results. Response of the alternative harbor plans was
investigated with only numerical model results. Harbor response to wind waves
and swell (short waves) is presented in Chapter 5. Harbor oscillation
characteristics (response to long waves) are presented in Chapter 6. For both
short and long waves, the harbor response is related to wave climate and to
relevant operational criteria at commercial piers.

Conclusions and recommendations are given in Chapter 7. This chapter is

followed by references and appendices with detailed information supporting the
main report and notation definitions.

Chapter 1 Introduction
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2 Field Wave Measurements

Planning

Wave data were required at Kahului Harbor to document present conditions
and provide data to validate numerical and physical models of harbor response to
incident wind waves and long waves, also called seiche, or infragravity waves
(typically, waves with frequencies lower than 0.03 Hz or wave periods longer
than 33 sec). Tidal response was not included. The numerical model calculates
the amplitude of the response at each grid point to an incident wave of a
particular height, frequency, and approach angle. For each frequency and
direction, validation involves driving the model with measured data of known
energy and comparing the model's output to the measured energy at one or more
sites within the harbor.

Planning the measurement program requires specifying the location, duration,
and type of data collected. Ideally, incident measurements coincide with the
outer boundary of the model, and there are sufficient interior measurements to
define spatial variability within the harbor. Finally, the types of data (wave
energy, wave direction, currents, etc.) and the range of frequencies measured
should equal or exceed the requirements of the model. Fiscal, logistic, and
schedule limits always constrain the ideal measurement plan.

Due to the random nature of waves, it is always difficult to schedule the
duration of a wave study in advance based solely on engineering considerations.
It is desirable to continue measurements long enough to obtain a broad range of
incident conditions - up to or exceeding design conditions - but study schedules
and budgets usually override this issue. The plan for Kahului was an initial
deployment of one year. A decision to continue measurements would be based
on the amount and type of measurements obtained by the end of that year.

Instrument Type and Site Selection

Incident waves in deep water are used to define the wave field before it is
affected by local shallow water. For ocean swell with a period of 25 sec, deep
water is considered greater than about 500 m. Surface-following buoys are
typically used to measure waves in deep water, but the accelerometer-based
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sensors have a low frequency cutoff near 0.05 Hz (20 sec), or about at the
infragravity band, so only wind waves are measured. In January 1993, a 3-m
discus buoy, station number 51026, was installed at latitude 21.37° N, longitude
156.96° W - about 20 n. m. north of Molokai in 7,618 ft (2,322 m) of water.
While not directly offshore of the study site, the difference in the deep-ocean
conditions over distances less than 100 n. m. was considered small. The wave
climate portion of this study (Chapter 3) helped confirm this judgement. The
buoy, which measures directional wave energy and meteorological data, is
operated by the National Weather Service (NWS) National Data Buoy Center
(NDBC). The station was installed prior to, and maintained after, the Kahului
Harbor study by the Corps of Engineers’ Field Wave Gaging Program. During
the scheduled Kahului field data collection period, the station was funded by
HDOT.

The range of frequencies of interest for wave energy inside the harbor extends
from approximately 0.001 Hz to 0.2 Hz. Experience has shown bottom-mounted
pressure sensors provide the desired frequency response, flexibility of placement,
reliability, and survivability in the coastal environment. Due to the attenuation
of wave-induced pressure fluctuations with depth, measurement of the higher
frequency wind waves limits the allowable water depth of the bottom-mounted
sensors to around 10 m. (This constraint indirectly affected the offshore extent
of the numerical model grid boundary.) Directional information was needed for
incident energy at the model boundary. Three or more pressure sensors in an
array provide a two-dimensional (energy and direction) spectrum. Only non-
directional wave energy, provided by a single pressure sensor at each site, is
required inside the model domain. Design, installation, and operation of the
shallow water gaging system was provided by the Coastal Data Information
Program (CDIP), a joint effort of the Corps and the California Department of
Boating and Waterways. The CDIP is a network of wave gages operated by the
Scripps Institution of Oceanography (SIO). Gages in the network are linked by
radio and/or telephone to a central computing facility in La Jolla, CA, where data
are collected, analyzed, qualified, and stored.

Given the size and complexity of the harbor, a minimum of three interior
sites, in addition to the incident, or boundary site, were planned. Usually, these
sites are selected based on engineering judgement and logistics (Basco and
McGehee 1990). For this study, the numerical model itself was used to optimize
the measurement sites (Okihiro et al. 1994). Four interior sites were used in this
study. Gage locations are summarized in Figure 10 and Table 1.

Data Acquisition

The NDBC buoy measures directional energy with a pitch-roll-heave sensor
and magnetometer. The superstructure supports dual anemometers and baro-
meters for wind velocity and atmospheric pressure. Thermistors measure near-
surface sea and air temperature. Signals from the sensors are time averaged or
spectrally analyzed with on-board computers. Reduced parameters are
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| Table 1
Field Wave Gages
Coordinates Depth Sampling
MSL Fredq. Record Length

Name No. Type N.tat | W.Long. | {8 (Hz) {sec)
N. Molokat 51026 NDBC buoy 21°222° | 156°57.6' | 7,618 1.7 1,200
Array 77 CDIP array 20°54.2° | 156°28.2 478 1 8,192
Pier2 791 CDIPsinglept. | 20°53.7° | 156°28.0/ 453 1 8,182
Canoe Club 79-2 CUIP single pt. | 20°53.77 | 166°28.1 9.5 2 8,192
Back Basin 79-3 CDIPsinglept. | 20°83.6° | 156°28.3 121 1 8,192
Charnel 79-4 CDIPsinglept. | 20°83.9° | 156°28.5 305 1 g.182
Entrance

| Offshore Array

Figure 10. Field gage locations and bathymetry, in feet

transmitted hourly to the NWS$ gateway via Geostationary Operational
Environmental Satellite (GOES) for additional analysis, qualification, and
distribution. Edited data are provided monthly to CERC. Details of the
measurement, transmission, and analysis process can be found in Steele and
Mettlach (1993).
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The CDIP system was operated as a “hardwired” system. Signals from the
pressure sensors are sampled at 1-2 Hz (Table 1) via submarine cables from an
onshore field data logging station. The field station was designed to operate
independently, under locally resident program control, as a software-driven,
autonomous, data acquisition system. Its primary function is to locally acquire,
log, and, in response to a call from a host computer, upload the stored data. The
data are received through a phase lock loop, electronically conditioned and
optimally compacted, according to the header block instructions, and stored
locally in 16 K-bytes of RAM. Storage is based on the “first in, first out”
principle, with the oldest word overwritten by the latest word as the storage
buffer is filled. Two-way communication between the field station and the
central station in La Jolla is accomplished via modem connections, through
normal phone service. In response to a phone query from the central station,
typically every 3 hr, the field station uploads the latest data buffer. Since each
record is over 2 hr long, this allows for nearly continuous sampling (gaps of
several minutes occur during downloading). The central station data collection
computer, a Sun workstation, superficially examines the incoming data for
obvious defects, such as incomplete transmissions and failed phone connections.
A detected fault will trigger a retry call to the field station. After additional
quality control, final data are transferred monthly to CERC via Internet.
Additional details of the CDIP operation are given by Seymour et al. (1993).

Data collection commenced for the NDBC buoy in January 1993, was
interrupted briefly in May 1993, and continued through May 1994. Repairs were
effected in September 1994, and the buoy continued operation through 1995.
Table 2 provides summary statistics for the deployment with 20-year hindcast
statistics for comparison (Corson et al. 1986)." Figure 11 is a rose plot of the
mean significant wave height and occurrence by direction (convention is
direction waves are coming from, with respect to true north).

The CDIP system was installed in October 1994 and operated without
interruption through the duration of the study. As planned, the adequacy of the
measurements was assessed after the first year of operation (McGehee 1995).
The principal issues were the range of different types of incident conditions
measured by the buoy, and the leve! of infragravity energy measured by the
harbor gages.

While a reasonable variety of incident wave directions and frequencies was
captured, it was not a particularly energetic year. One event sufficient to affect
harbor operations occurred, on 14-15 March 1994, reportedly due to wind wave
conditions in the entrance. Figure 12 expresses the total measured infragravity
energy for each record (high-energy cases only) at each site as an equivalent
wave height during the first 8 months of record. Infragravity wave heights
experienced in mid-March were exceeded in other months without reported
problems. It is not clear whether the lack of reported impacts on operations in

! For convenience, mathematical symbols used in Table 2 and throughout this report are listed in the notation
(Appendix I).
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Table 2
Summary Statistics, NDBC Buoy 51026, N. Molokai

Statistical Parameter NDBC Buoy 51026' ~ | WIS Station 31
Mean H, (ft) 85 8.2
Standard deviation of H, (ft) 26 3.0
Mean T, (sec) 10.7 9.3
Standard deviation of T, (sec) 29 26
Most frequent direction (deg coming from) 90 \ 45
Maximum H, (ft) 23.9 23.3
Associated T, (sec) 16.7 10.0
Associated direction (deg coming from) 344 196
Percent occurrence, period>18.2 sec 1.2 0.0
Percent occurrence, period>15.4 sec 7.7 0.4

! Data from Jan 93 through Feb 96

MEAN WAVE HEIGHT

.....................

PERCENTAGE
OF SAMPLES
0-02%
ZZa

10-15%
> 15% .

Figure 11. Wave rose, NDBC buoy 51026, N. Molokai
the harbor at those other times results from lack of problems, or failure of

problems to be observed/documented. Thus, a simple, quantifiable threshold for
allowable infragravity energy was not determined. Additional measurements
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were recommended to attempt the capture of a high infragravity event
concurrently with noticeable impacts on harbor operations.
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Figure 12. Overview of extreme infragravity wave events; only events with
H; 1ng>15 cm are shown (from McGehee (1995))

The memorandum (McGehee 1995) also supported a statistical correlation
study to test the ability to predict the amplitude of observed infragravity energy
in shallow water with the characteristic wind wave parameters measured
offshore. Preliminary analysis showed weak correlation. A longer data set was
recommended for statistical reliability of the correlation study. The recommen-
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dation was followed, and the gages were funded for an additional winter season,
through March 1995.

Analysis Methods

The CDIP nearshore wave gage data were processed to give two types of
output for each record: spectra and parameters. These outputs, which were
customized to meet needs of the Kahului Harbor study, are briefly described
here. NDBC buoy data were analyzed with standard NDBC procedures.

SIO provided customized spectra and parameters covering the time period
Nov 93 - Sep 94. Subsequent wave climate studies indicated that this data set
gives a reasonable representation of the wind wave and swell climate. Wind
wave and swell data from the winter of 1994-5 are comparable to the winter of
1993-4. Fewer extreme infragravity (long) wave events occurred in the winter of
1994-5 than in the winter of 1993-4. There were eight events with significant
wave heights for long (infragravity) waves H,,,,>15 cm in 1993-4 and only
three such events in 1994-5 (Merrifield and Okihiro 1996). Also there were no
reported operational problems in the harbor during the winter of 1994-5.
Because of these considerations, harbor data from Nov 93 - Sep 94 were
considered sufficiently representative of the full measurement period for
validation of the numerical model and for relating numerical model results to
operational concerns.

Spectra

Time series from the CDIP gages were subjected to SIO’s standard spectral
analysis for long records. The 8,192-sec records gave a spectral resolution of
0.000122 Hz. Spectral output files were created with energy values for the first
286 spectral frequencies, or spectral lines (up to a frequency of 0.0349 Hz,
corresponding to a wave period of 28.6 sec), followed by energy values for
higher frequencies (shorter wave periods) grouped into bands of width 0.01 Hz.
A total of 32 frequency bands were included, with central frequencies ranging
from 0.04 Hz (25 sec) to 0.35 Hz (2.9 sec). Thus the analysis system produced a
high-resolution spectrum for infragravity waves and a conventional resolution
spectrum for wind waves and swell. The wind wave and swell spectrum is
estimated with an unusually high level of confidence (high number of degrees of
freedom) because of the exceptionally long records.

Parameters

Spectral results were also condensed into a small number of parameters for
output (Table 3). Significant wave height and peak spectral period for long
waves were computed from the infragravity portion of the spectrum using the
same procedures traditionally used for wind waves and swell (short waves). The
Back Basin gage, used for water depth measurement, had a higher quality
pressure transducer than the other gages, and was more stable over long time
periods.

Chapter 2 Field Wave Measurements

15




16

The last three parameters in the table were added at CERC to the basic
parameter files provided by SIO. The number of major peaks in the short wave
spectrum was computed by a procedure similar to that of Thompson (1980).
Peaks were considered major if their energy density differed from that of the
intervening low point by at least 3 percent of the total energy. Amplification
factors for long and short waves were defined as

o P g CH s g
amp,l ( H ) ? amp,s ( H ) (1)
s,long /array s ‘array
Table 3
Field Wave Parameters
Description Symbol
Year, month, day, hour, minute
Significant wave height, long waves H, g
Peak wave period, long waves (greater than 29 sec) T ong
Significant wave height, short waves H,
Peak wave period, short waves (3-25 sec) T,
Incident wave direction, short waves g,
Long-term average depth at Back Basin
Mean depth over record length at Back Basin n
Number of major peaks in short wave spectrum N,
Ampilification factor, long waves A
Amplification factor, short waves Arps

Estimation of Tp

The traditional procedure for estimating T, for wind waves and swell was
modified in this study to obtain better resolution in the swell periods. Peak
period is normally calculated as the reciprocal of the frequency at the midpoint of
the highest energy spectral band. This is a standard, widely accepted procedure.
The resolution with standard 0.01-Hz spectral bands is sufficient to give a good
estimate of peak period over most of the possible frequency range, but it is rather
coarse for the longer swell periods. The standard procedure imposes some
limitations on the Kahului Harbor study for the following two reasons:

a. Much of the wave energy at Kahului Harbor, including cases of greatest
interest, is long period, low frequency swell.
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b. The range of possible wave period variation within a single low-
frequency band translates into significantly different harbor responses in
the numerical model and, presumably, the field.

The most straightforward change is to use a finer spectral bandwidth, though
finer bands have the undesirable consequence of lower confidence levels. SIO
provided CERC with one month (January 1994) of detailed line spectral coeffi-
cients to explore alternatives (Thompson 1995). The effect of bandwidth on the
T, estimate is illustrated in Figure 13 using data from the array (line spectra from
all four sensors averaged together). This record was selected because there was
an exceptional level of long wave energy in the harbor. Bandwidth is expressed
in the figure in terms of the number of spectral lines. The standard SIO proce-
dure for the Kahului Harbor gages gives 82 lines per band. Peak period esti-
mates are quite variable. For this particular case, T, estimated by the standard
procedure is 14.29 sec while the “true” peak period (middle of the scatter)
appears to be around 15 sec. The sawtooth shape of the plotted data arises
because the main energy concentration slowly marches toward shorter period as
bandwidth increases. Eventually, the band preceding the main energy extends
far enough to encompass that energy, and peak period abruptly shifts to the
center of that band.

The artificial variability induced by bandwidth can be reduced by using
overlapping bands to identify a T, The approach is to select a bandwidth and
identify T,. Then the bands (keeping the same bandwidth) are shifted a fixed
number of lines toward higher frequency (shorter period) and 7', is again
estimated. The bands are shifted repeatedly and the final estimate of T, is based
on whichever band gives the very highest energy. The whole process can be
repeated with different choices of bandwidth to examine this effect as well.
Results with a two-line shift show a significantly reduced scatter relative to the
nonoverlapping approach (Figure 14). Thus the overlapping bands allow a more
refined estimate of 7,.

Two other cases in January 1994 corresponding to high levels of long wave
energy in the harbor were examined using the same overlapping band approach.
Peak period for 20 Jan 94 (1314) appears to be well-estimated by both the over-
lapping approach and the standard approach (Table 4). However, this case has a
relatively short 7, and broad energy spectrum. The T, for 31 Jan 94 (0719) is
around 18 sec by the overlapping approach and 20 sec by the standard approach.
The standard analysis is not sufficiently discriminating for this case.
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Table 4
Effect of Overlapping Bands on T, Estimates, Array
T, (sec)
Date Standard Analysis Overlapping Bands, Two-Line
Offset
131103 Jan 94 14.3 14.8
1314 20 Jan 94 10.0 10.1
0719 31 Jan 94 20.0 18.0

Because of these considerations, the SIO procedure for estimating T, values
for wind waves and swell in this study was modified to an overlapping approach
with a one-line overlap. Thus the reported T, corresponds to the midpoint of the
82 consecutive spectral lines which collectively have the highest energy in the
spectrum.

Results

Parameters and spectra from the CDIP array and harbor gages were studied
and evaluated in various ways to better understand harbor behavior and to
prepare results in a form useful for validating the numerical model. Summaries
are included in Appendix A of this report and in monthly compendia (e.g.,
Coastal Engineering Research Center (1996)). Complementary studies by
Okihiro and Guza (1996) have also contributed to understanding of the harbor.

Parameters

Parameter time-histories were plotted by month, as illustrated in
Figures 15-17. The plots are useful for reviewing the variety of conditions
recorded and for identifying relationships between parameters. As an example,
Figure 16 shows a strong tendency for high values of H and H ,,,, to occur
together. Correlation coefficient statistics were computed between selected
parameters, as illustrated in Table 5 for Pier 2. The correlation coefficient for H
and H,,,, is fairly high, 0.81 at Pier 2. That correlation was also high at other
gages (not shown): 0.74 at the array and between 0.61 and 0.72 at the other
harbor gages. Other parameters showed lower correlations, but evidence of some

other tendencies, such as a weak correlation between H ,,,, in the harbor and
(Hy) gy

The variation of A,,,,; and A ,,,, with various long and short wave parameters
is an important concern. These parameters are actually quite consistent at any
given location. For example at Pier 2, A, is around 0.1 and A, is generally
between 1.2 and 1.8. Peaks in A, tend to coincide with long period swell
events (high values of 7,). The smallest values of A,,,, generally occur with
high energy events (high values of H and H_,,, ).
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Parameter summaries are especially useful for numerical modeling of short
waves. The range and distribution of measured T, and 6, values at the array help
determine wave conditions to be modeled (Figures 18 and 19). Since the
numerical model produces amplification factors as a function of incident short
wave period and direction, similar results from the field data are needed for
validation. Values of A, , from field gage records were grouped according to
1-sec bins of T, and 10-deg bins of §,. A mean and standard deviation were
computed from values of 4, in each bin (Appendix B).

The parameter N, (number of spectral peaks) at the array was found to be one
in almost every case. Thus short wave conditions at Kahului Harbor are gener-
ally well-represented by 7. More than one major wave event (e.g. sea and
swell) occurring simultaneously is unusual.
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Figure 15. Time-history of H_and & (deg, going toward); array, Jan 94

Table 5

Field Wave Gage Parameter Correlation Coefficients, Pier 2, Jan 94

Para- Parameter

meter

T osong H, T, 6, n A Aps (H)aray (Turay

H,jong 0.49 0.81 0.42 0.03 0.06 0.10 0.47 0.12

H, 1.00 0.33 0.03 0.10 0.44 0.24

T, 1.00 0.05 0.54

6, 1.00 0.01 0.10

A 1.00 0.66
20
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Spectra

Short wave spectra were required to compute N, It is also helpful to examine
spectra for specific events of interest to identify any presence of multiple wave
systems or to confirm that H, and T, adequately characterize the sea state.

Spectra are especially useful in relation to long waves. Average long wave
spectra were computed by month for each gage to reveal general structure in the
long wave response of the harbor. A maximum energy density value (over all
records during the month) at each spectral frequency was also identified. The
results for January 1994 are typical (Figure 20). Average spectra are surprisingly
similar from month to month. Maxima are typically an order of magnitude
higher than the average, but they define a shape very similar to the average
spectra. The maxima clearly show more statistical variability than the averages,
as would be expected.

Long wave spectra were examined in more detail to better understand harbor
response during high energy long wave events. Spectra for one such event are
shown in Figure 21. Averages of the event spectra are also shown. Individual
spectral values fluctuate over a very wide range. Averages follow the charac-
teristic shape of monthly averages, suggesting that each area of the harbor tends
toward a signature response curve which varies in energy level according to
incident wave variations but not in shape. The energy level across all frequen-
cies of the extreme event average spectra is considerably higher than that of the
monthly average spectra (Figure 20). Mean water level variations during the
event had no clear impact on energy level of the spectral peaks at Pier 2, but they
did appear to cause very small shifts in the frequency at which the peaks
occurred.

To explore whether high energy long wave events consistently excite the
main resonant peaks of the signature response curve, the time-history of energy
level at specific resonant frequencies was plotted. Figure 22 shows results for a
dominant resonant frequency at Pier 2. Two adjacent frequencies are shown
because varying conditions, such as tidal water level, caused the peak frequency
to vary over this very small range. By comparing with Figure 16, it is clear that
high values of H,,,,, are accompanied by high energy in this resonant peak.
Other resonant peaks show similar correspondence, indicating that when H long 1S
high, all of the characteristic resonant frequencies have high energy levels.

Correlations for predicting incident infragravity wave energy

A special study was conducted to relate incident infragravity (long) wave
energy to offshore wave conditions, for which long-term information is available.
The purpose of the correlation study was to determine the ability to predict
infragravity energy levels incident to the harbor from deepwater, wind wave
parameters (Merrifield and Okihiro 1996). Correlations and linear regressions
were calculated between observed infragravity energy (converted to an H,,,) in
the frequency range 0.002-0.040 Hz (500 to 25 sec) at the array just outside of
the harbor and reduced parameters (H, T, and 6,) measured at the offshore
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NDBC buoy. The distribution of H,,,,. at the array and 8, at the buoy over the
two-winter analysis period is shown in Figures 23 and 24.

In general, the correlations were weak. A correction for the reduction in wind
wave energy at the array based on the direction of the deepwater waves provided
some improvement, but predictions of infragravity energy levels based on
offshore wind wave height still vary by a factor of five or more (Figure 25). The
study concluded that detailed inspection of the deepwater spectra, perhaps in
combination with a refraction-diffraction transformation model, would be needed
to significantly improve the predictions.

Special events, harbor closing

The only reported operational problem during the period of harbor wave
measurement was a closing of the harbor on 14-15 Mar 94. Figures 26-28
summarize CDIP array and NDBC buoy wave and meteorological measurements
during the event. Figure 29 helps put the event in perspective relative to the full
winter of 1993-4. The steepness parameter in the figure is the ratio of (H ),,,,to
deepwater wavelength based on (7)), Although (H),,..., (H, ,n5) arrap a0
(H,),.., are all high during the closure, they are not sufficiently high to distin-
guish the event as more extreme than other recorded events. The exceptional
condition during closure appears to be a combination of high winds, high wave
steepness, and long duration. Thus the harbor was apparently closed by a haz-
ardous short wave condition (steep, energetic waves with likely wind-induced
breaking).

Special events, tsunami

While tsunamis were not considered in the design of this study, the continu-
ance of the gages beyond the first year resulted in a fortuitous measurement of
the Shikotan tsunami on 4 October 1994 (McGehee and McKinney 1996). The
measurement represents one of the few large (approximately 1-m wave height)
tsunami time series sampled continuously at high frequency (1 Hz). The tsunami
wave period was approximately 30-35 min, or about 0.0005 Hz. Aside from the
scientific value, this data set provided an opportunity to examine the response of
the harbor to one instance of large-amplitude infragravity energy.

Special events, extreme event parameters

A more detailed documentation of extreme events recorded by the CDIP
gages is given in Appendix C. Included are tabular surnmaries of parameters for
observations with (H,),,,,,,>200 cm for short wave extremes and H; ,,,>20 cm at
the array or Pier 2 for long wave extremes.
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3 Wind Wave and Swell
Climate

Sources

Three sources of wind wave and swell information were available to develop
wave climate outside the harbor entrance (Table 6 and Figure 30). The first was
the directional array gage in the 47.6-ft (14.5-1n) depth just outside the harbor
entrance (CDIP gage 77). Data from November 1993 through December 1994
were used. The second was the directional buoy north of Molokai (NDBC buoy
51026) with data from October 1993 through May 1994 and September through
December 1994. These gages are discussed in Chapter 2. The time intervals -
used were intended to be reasonably representative of the seasons of the year so
that the gage data could be compared to long-term climate. Inclusion of the
additional three months of available array data (Jan-Mar 95) would have
distorted the distribution toward winter conditions (high wave heights).

The third source was the Wave Information Studies (WIS). WIS has hindcast
waves over the North Pacific Ocean and saved information at selected deepwater
stations around the Hawaiian Islands (Corson et al. 1986). Station 31, north of
Maui, from the main 20-year hindcast, was considered in this study. The study
also included two stations from a specially prepared 1-year WIS update
coincident with the measurement time period. Stations of interest in the special
update, which used a different grid, are shown in Figure 30 (Stations 3 and 5).
Results from Station 5 were compared to data from the NDBC buoy to validate
the special hindcast. Sample validation plots and wave summaries are given in
Appendix D.

Deepwater Wave Climate

Although an NDBC buoy and three WIS stations are available in deep water
offshore from Kahului Harbor, only WIS Station 31 provides long-term climate
information. It is important to evaluate whether the locations and time period of
measurement and special hindcast are representative of the long-term
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Table 6
Sources of Wave Climate Information

Source Years Latitude (deg N) | Longitude (deg W)
CDIP Gage 77 (Kahului array) 1993-94 20.90 156.47
NDBC Buoy 51026 (N. Molokai) 1993-94 21.37 '156.96
WIS Station 31 1956-75 21.94 155.69
WIS Station 3 1994 22.20 155.63
WIS Station 5 1994 21.26 156.56

24'N
23°N
22°N

OAHU oNDBG 51026
- +STAS

21°N MOLOKA! Kahului Harbor (Array)
20°N

19°N

HAWAII

18'N§ .
161°"W  160°'W  159°'W  158°'W 157°W 156'W 155'W  154'W

Figure 30. Location map for wave climate study

climate incident to the north coast of Maui. Wave parameter summaries for the
deepwater sources are compared in Figures 31-33.

Peak wave direction was not available for the 20-year hindcast, only the mean
wave direction. Wave components for sea (component 1) and swell (compo-
nent 2) were available for this data set and consisted of height, period, and
direction for each component. To get a representation of peak directions for
comparison, a direction was chosen from either the sea or swell. If the overall
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Figure 32. Deepwater wave climate comparison, T,

peak period was close to the sea period, the direction associated with the sea was
chosen as the peak direction. If the peak period was close to the swell peak, the
direction associated with the swell was used.

Summaries shown in the figures are generally similar. Wave height and
period distributions indicate virtually the same climate from all sources, although
the buoy shows a tendency for a greater occurrence of swell periods above
14 sec. Wave direction distributions for the buoy and Station 31 both show
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Figure 33. Deepwater wave climate comparison, 6, (deg, coming from)

preferences for waves from the east, east-northeast, and northwest. Stations 3
and 5 also show a concentration of waves from northerly directions but the main
concentration is centered on north. Despite these differences, it is concluded that
the deepwater wave climate offshore from Maui’s north coast is adequately
represented by the available buoy measurements and long-term WIS station.

Wave Climate at Kahului Harbor

The deepwater wave climate analysis suggests that data from the array, which
covers a time period comparable to the NDBC buoy and special hindcast sources,
would reasonably characterize the wave climate immediately incident to Kahului
Harbor. The array measurements incorporate local effects of sheltering and
bathymetry.

To further validate the use of array data as the incident wave climate, an
approximate procedure was used to relate the 20-year WIS hindcast to Kahului
Harbor entrance. The procedure was to develop an empirical transformation
between NDBC buoy and array measurement sites and then apply the trans-
formation to the 20-year deepwater climate.

Wave heights and peak periods in the NDBC buoy and array data sets were
segregated by direction bands, based on direction measured at the buoy. Linear
regression equations were calculated for bands with more than 100 cases
(Table 7). The regression equations were applied to the 20 years of WIS
Station 31 information to estimate long-term climate at the Kahului gage. The
transformed Station 31 (WIS 31T) and array gage summaries are very similar,
especially considering the approximations involved in the transformation

(Figures 34-36).
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Table 7

Empirical Relationships Between Deepwater and Kahului

Harbor Entrance
NDBC Buoy Direction

Parameter (deg. coming from) Empirical Transformation' | Correlation

Significant 0-45 H,=-0.21+064 H, 0.77

Wave Height

(m) 45-90 H,=0.06+0.34 H,, 0.77
80-135 H;=0.06 + 0.27 H,, 0.71
270-315 H,=0.18 + 0.21 H,, 0.71
315-360 H,=0.05+0.36 H,, 0.71
0-360 H,=0.07 +0.35 H,, 0.71

Peak Wave 0-45 T,=-25 +077 T, 0.62

Period (s)
45-90 T,= 8140237, 0.10
90-135 T,= 59+053 T, 0.17
270-315 T,= 3440657, 0.42
315-360 T,= 41+065T, 0.58
0-360 T,= 50+058 T, 0.55

Wave Direction | 0-45 g,=22+0.20 8, 0.14

(deg, coming

from) 45-90 g,=33-0.054, -0.04
90-135 6,=45-0.17 6, -0.06
270-315 6,=-153 + 0.60 4, 0.10
315-360 6,=95-0.19 G, -0.08
0-360 6,=29+0.01 4, 0.10

'H, T, 8, represent CDIP 77 array gage outside Kahului Harbor;

H., T,. 8, represent NDBC buoy 51026.

In conclusion, the time period of available measurements at the array gage
appears to give a good representation of the overall wind wave and swell climate
immediately incident to Kahului Harbor. It is recommended that the array data
be used as the primary source of wave information for driving numerical and
physical models of the harbor.
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4 Numerical Model

Objectives and Approach

The numerical model studies have three main objectives:
a. Calibrate and validate the numerical model with field data.
b. Advance understanding of the existing harbor wave response.

c. Evaluate the effect of proposed harbor modifications on harbor wave
response.

The numerical model used for the studies, HARBD, is the standard WES tool
for numerical harbor wave investigations. The model includes the following
assumptions:

a. No wave transmission through the breakwaters.

b. No wave overtopping of structures.

¢. Structure crest elevations above the water surface cannot be tested or
optimized.

d. Currents in the channel cannot be evaluated.
e. Wave breaking effects in the entrance and harbor cannot be considered.
J. No nonlinear effects are considered.

g. Diffraction around structure ends is represented by diffraction around a
blunt vertical wall with specified reflection coefficient.

Despite limitations imposed by the above assumptions, HARBD is considered

suitable for meeting the numerical modeling objectives of the Kahului Harbor
study.

Chapter 4 Numerical Model
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The harbor wave response model is presented in the following section,
including a general description of the HARBD model and implementation of the
model at Kahului Harbor. Validation was accomplished with a combination of
storm wave events selected from available field data and with statistical sum-
maries of a wide range of field cases. The final section of this chapter describes
the test procedures and calculations. Procedures for evaluating operational
performance at a pier are discussed.

As part of the test procedures, a suite of incident wave conditions must be
specified at the seaward boundary of the area covered by HARBD. Incident
short waves are determined by consideration of measurements outside the harbor.
Incident long waves are specified over a broad range of frequencies but only a
normally incident direction to identify possible harbor resonant responses.

The existing harbor and 11 proposed modifications were studied. Results for
wind waves and swell are presented in Chapter 5. Harbor oscillation results are
presented in Chapter 6. The presentation focuses on wave conditions in the
vicinity of existing or proposed piers, but results over the full harbor area are
also given.

Model Description

Model formulation

The numerical wave model HARBD is a steady-state hybrid element model
used in the calculation of linear wave response in harbors of varying size and
depth (Chen 1986, Chen and Houston 1987, Lillycrop and Thompson 1996).
Originally developed for use with long-period waves (Chen and Mei 1974),
HARBD has since been adapted to include capabilities for modeling wind waves
and swell (Houston 1981), bottom friction, and partially reflective boundaries
(Chen 1986). The model is based on a linearized mild slope equation. An
overview of the model and its applications is given by Thompson and Hadley
(1995).

The HARBD model has been shown to perform satisfactorily in comparison
to analytic solutions and laboratory data for a variety of wind wave and swell
cases (Houston 1981; Crawford and Chen 1988; Thompson, Chen, and Hadley
1996) and long wave cases (Chen 1986; Chen and Houston 1987; Houston 1981;
Thompson, Chen, and Hadley 1993). As a result, it has been used with confi-
dence in both long wave and short wave studies. Studies encompassing both
long (harbor oscillations) and short waves are Harkins et al. (1996) and
Thompson and Hadley (1994b). Additional long wave studies have included
harbor oscillations (Briggs et al. 1994; Briggs, Lillycrop, and McGehee 1992;
Mesa 1992; Sargent 1989; Weishar and Aubrey 1986; Houston 1976) and
tsunamis (Farrar and Houston 1982, Houston and Garcia 1978, Houston 1978).
Additional wind wave and swell studies include Thompson and Hadley (1994a);
Lillycrop et al. (1993); Lillycrop and Boc (1992); Lillycrop, Bratos, and
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Thompson (1990); Kaihatu, Lillycrop, and Thompson (1989); Farrar and Chen
(1987); Clausner and Abel (1986); and Bottin, Sargent, and Mize (1985).

. The HARBD model covers in detail a domain including the harbor and a

portion of the adjacent nearshore area (Figure 37). This domain is bounded by a
180-deg semicircle in the water region seaward of the harbor entrance (0A in
Figure 37) and the land-water interface along the shoreline and harbor (9C in
Figure 37). The region defined by these boundaries is denoted Region A. If
possible, the semicircle radius should be at least twice the wavelength of the
longest incident wave to be modeled (using a typical water depth within the
semicircle). Also, the semicircle should encompass any complex offshore
bathymetry which strongly influences waves entering the harbor. In general, the
semicircle should be as large as practical constraints on grid size and resolution
will allow.

S
/ \
REGION 8 \
/. BOUNDARY AT \

Figure 37. Representation of HARBD domain

The area outside the semicircle is treated as a semi-infinite region which
extends from a straight coastline seaward to infinity (Region B). This region is
assumed to have a constant water depth and no bottom friction.

Assuming linear, regular waves propagating over mild slope in arbitrary
water depth, Chen (1986) derived the governing equation as
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where
V = horizontal gradient operator
A = complex bottom friction factor
¢ = wave phase speed
¢, = wave group speed
¢ = velocity potential
@ = angular frequency
This equation is identical to Berkhoff's (1972) equation except for addition of the

bottom friction factor 4. The factor 4, which is a complex number with
magnitude greater than zero and less than or equal to one, is specified as

R T 3)

where
i =D
f = dimensionless bottom friction coefficient that can vary in space
a; = incident wave amplitude
d = water depth
x = wave number
¥ = phase shift between stress and flow velocity

The bottom friction factor is a factor tending to reduce local velocities propor-
tionately through the relationships
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where
u,v = local horizontal velocity components
x,y = horizontal coordinates
Boundary conditions are specified in Regions A and B. At the solid boundary

AC, a reflection/absorption boundary condition is used similar to the impedance
condition in acoustics. The condition is specified as

SRELI ®)
with
. 1-K,
© - ® TR ©
where

n = unit normal vector directed into the solid region

K, = reflection coefficient of the boundary

Values of K for wind waves and swell are normally chosen based on the
boundary material and shape. General guidelines for K, can be assembled from
laboratory and field data (Thompson, Chen, and Hadley 1996). In wind wave
and swell studies, K, is generally chosen to be consistent with this guidance.
Effects such as slope, permeability, relative depth, wave period, breaking, and
overtopping can be considered in selecting values within these fairly wide
ranges. For long wave studies, K, is generally set equal to 1.0, representing full
reflection.

The second boundary condition is imposed in the far region (Region B) at
infinity. It requires that the scattered wave, defined as the difference between the
total wave and incident wave, behave as a classical outgoing wave at infinity.
This radiation condition may be expressed as
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where
r =radial polar coordinate
¢ = velocity potential of the scattered wave

The complete boundary value problem is specified by Equations 2, 5, and 7.
A hybrid element method is employed to solve the boundary value problem. A
conventional finite element grid is developed and solved in Region A. The
triangular elements allow detailed representation of harbor features and
bathymetry within Region A. An analytical solution with unknown coefficients
in a Hankel function series is used to describe Region B. For a given grid, short
wave period tests (relatively large values of x) require more terms than long
period tests to adequately represent the series. A variational principle with a
proper functional is established such that matching conditions are satisfied along
AA. Details are given by Chen (1986) and Lillycrop and Thompson (1996).

Experience with the model has indicated that the element size Ax and local
wavelength L should be related by

Axs£
6

®

Typically, harbor domains include some shallow areas in which many elements
would be needed to satisfy the constraint in Equation 8. In practice, Equation 8
is at least satisfied in the harbor channel and basin depths. If additional elements
can be accomodated, it is generally preferred to extend the semicircle further
seaward rather than to greatly refine shallow harbor regions.

Input information for HARBD must be carefully assembled. In addition to
developing the finite element grid to suit HARBD requirements, a number of
parameters must be specified. Critical input parameters and ranges of typical
values are summarized in Table 8.

The principal output information available from HARBD consists of
amplification factor and phase at each node. These are defined as

- lal - |H .
R

e - tan'l Im {d)}
Re {$}

®
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Table 8
Critical HARBD Input Parameters and Ranges of Typical Values
Typical Values
Where Specified
Parameter Short Waves Long Waves
Bottom friction, B Every element 0.0 0.0-0.1
Boundary reflection, K, Every element on solid 0.0-1.0 1.0
boundary
Coastline reflection, K, .. | Single value 1.0 1.0
Depth in infinite region, Single value Between avg. & max. on semicircle
O
Number of terms in Single value 8-100' 8
Hankel function series
' The number of terms needed increases as wave period decreases.

where
A,,, = amplification factor
a,a; = local and incident wave amplitudes
H, H; =local and incident wave heights
0 = phase relative to the incident wave
Im{ @} = imaginary part of @
Re{ @} = real part of ¢

Amplification factors are easily interpreted. Phases are helpful in viewing wind
wave and swell propagation characteristics and in interpreting standing wave
patterns. In long wave applications, phases prove useful for determining relative
phase differences within the harbor, interpreting harbor oscillation patterns, and
identifying potentially troublesome nodal areas.

Spectra! adaptation

HARBD computes harbor response to specified wave period and direction
combinations. However, the model is often used to approximate irregular wind
wave and swell behavior, as in physical model tests with irregular waves and all
field cases. More realistic numerical model simulations can be obtained by
linearly combining HARBD results from a range of regular wave frequencies and
directions in the irregular wave spectrum. With proper weighting, regular wave
results represent a desired spectral distribution of energy.
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Spectral adaptation of the HARBD model is done as a post-processing step
using the standard, regular wave output from the model. For a given set of
incident wave directions representing the range of possible approach directions,
HARBD is run for a number of wave periods spread between the shortest period
satisfying the grid resolution constraint of Equation 8 and the longest swell
period of interest.

Spectral post-processing is based on the assumption that a consistent spectral
form can be applied at every node. This major assumption provides the basis for
a workable, reasonable spectral weighting which improves on the traditional

regular wave approach. The spectrum is represented as the product of two
functions:

S(£9) = S(f) D(£9) (10)

where
S(f,6) = directional spectral energy density functioﬁ
S(f) = spectral energy density function
D(f,6) = angular spreading function

The JONSWAP spectral form was chosen for S(f) (Hasselmann et al. 1973).
The JONSWAP spectrum is specified as (U.S. Army Corps of Engineers 1989)

2.
ag el b

S(f) PV | an

where S(f,) = spectral energy density at frequency f.

The parameters a and b are given by the following relationships:

L. L2
LT,
LT, - 17
b= e (12)

= 007 for f,.sfp

= 0.09 for fizj;
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where
T, = peak spectral period
f, =peak spectral frequency = ?1
P

Parameters @ and y are calculated as

o0 = 157.9 €

Y = 6l4e>

€ = H,
4Lp

where

H, = significant wave height

L, = wavelength for waves at peak frequency

The parameter € is a significant wave steepness. The parameter ¥, called the

peak enhancement factor, controls the sharpness of the spectral peak.

Although the JONSWAP spectrum
was developed primarily for actively
growing wind waves, it can be used with
appropriate choice of y to approximate
any single-peaked spectrum, including
old swell which has travelled a great
distance from the generation area
(e.g. Goda 1985) (Table 9).

The angular spreading function in
Equation 10 is described by the
commonly used expression

D(B) = G(s) cos® (9_“2‘_39)

where
G(s) = normalizing function

s = constant-valued spreading parameter
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Guidance for
Choosing y

Wave Condition | v
Growing sea 3.3
Old swell 8-10

(13)

(14)

49




6, = primary wave direction

6-6,= wave direction difference, ranging from -1/2 to +7/2

The spreading parameter s controls

the magnitude of directional spread. Table 10
As the value of s increases, direc- Guidance for Choosing s
tional spread narrows. Wind waves
are typically represented by broad Wave Condition s
spreads and swell by narrow spreads. .
Recommended representative values Wind waves 10
for each are given in Table 10 Swell 25-75
(Goda 1985).

Spectral post-processing begins

with specification of the desired H,,T, ¥ and s and the arrays of HARBD
amplification factors. A refined JONSWAP spectrum is computed with
1,000 points, where the fs in Equation 11 are

fi=05%,, f,=0502%,, f;=0.504%, , ... fim = 2.498%,

The number of wave periods computed with HARBD is always much smaller
than 1,000, typically less than 20. These periods, converted to frequency
(reciprocal of period), can be used to define bands in the JONSWAP spectrum.
Bands are bounded by the midpoints between HARBD computational
frequencies. The highest and lowest frequency bands are assumed to be centered
on the highest and lowest HARBD computational frequencies, respectively. A
weighting factor for each HARBD-defined band is computed by summing values
from the refined JONSWAP spectrum which fall within the band and
normalizing by the total spectral energy.

Wi T T (15)

where

w, = weighting factor for ¥’th HARBD computational frequency

+
N,, = index of lowest JONSWAP frequency f; satisfying f; > fk—; fi
i i : : f;c+f;c+1
N, = index of highest JONSWAP frequency f; satisfying f; < —
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Jorfefrr = (k-1)’th, K’th, and (k+1)’th HARBD computational frequencies,
with f <fi<fins

Though not shown in the equation, the weighting factor also includes fractional
energy interpolated across JONSWAP frequencies bracketing the two end points
of each HARBD band.

Directional spread is also calculated over 1,000 points, covering a range
of -7/2 to + /2. The midpoints between HARBD wave directions are used to
define directional bands. The weighting factor for each HARBD-defined
directional band becomes:

E’Z

D(8,)

W, = ot (16)
D(8,)

-~
U

a

=

E

~
"
—

where

w, = weighting factor for n'th HARBD computational direction

+0

n-1 n

2
0 +0

n “n+l

N,, = index of lowest spreading direction &, satisfying 6, >

N,,= index of highest spreading direction &, satisfying 0, <

6.,6,6.,, =(n-1)th, n'th, (n+1)'th HARBD computational directions,
with 8, ,<6,<8,,,

The width of the lowest HARBD-defined directional band is assumed to be twice
the difference between the HARBD direction and the first midpoint. The width
of the highest HARBD-defined directional band is defined similarly.

The effective amplification factor at each node can then be computed as

Nr Np

Aoy = \J}:E w, W, Ap(£6,) a7

k=1 n=1

where

(A np)er = effective, or spectral, amplification factor at a node
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A,,(f,, 6,) = nodal amplification factor for HARBD computational
frequency f, and direction 8,

N = number of HARBD computational wave periods

N, = number of HARBD computational wave directions

Finite element grids

The finite element numerical grid depicting existing conditions at Kahului
Harbor was created using WES's finite element grid development software
(Turner and Baptista 1993) (Figure 38). The grid covers the entire Kahului
Harbor area and extends somewhat seaward into Kahului Bay. The land
boundary was digitized from an aerial photograph. Grid element size is based on
the criterion of 6 elements per wavelength (the minimum recommended resolu-
tion with HARBD) for a 10-sec wave in 15-ft water depth. Depths for virtually
all areas of interest exceed 15 ft. For the longer period waves, the grid gives a
high degree of resolution. Grid characteristics are summarized in Table 11.

The radius of the seaward semicircle is 2,307 ft. This is equivalent to 2.9 and
9.7 wavelengths for the longest and shortest short wave periods considered,
assuming a representative water depth of 35 ft. The semicircle size and location
were chosen to include both breakwaters and the immediate nearshore area. The
semicircle extends sufficiently far seaward to cover the most important nearshore
bathymetry while maintaining a reasonable number of grid elements.

Bathymetric data were obtained from National Oceanic and Atmospheric
Administration hydrographic chart 19342 and WES bathymetric survey data.
Digitized depths were transferred onto the finite element grid using the WES grid
software package. A contour plot of bathymetry is given in Figure 39.

Reflection coefficients K, are needed for all solid boundaries. For the short
wave tests, K, values were estimated from existing Corps of Engineers guidance,
photos, and field notes from a recent site visit by WES personnel, and past
experience. The solid boundary was divided into 13 zones and a reflection
coefficient was estimated for each zone (Figure 40). Reflection coefficients
ranged from 0.2 for the shallow sandy beach along the southwest shore of the
existing harbor to 0.5 for all pier areas and 0.9 for the grouted revetment along
the western side of Pier 2. Additional parameter values used in the numerical
model are summarized in Table 12.

Different parameters are used for the long wave tests. The reflection
coefficient was set to 1.0 for all boundaries, since long waves generally reflect
very well from a coastal boundary. Long waves are more affected by bottom
friction than short waves, so a value of § greater than zero is appropriate. The
value of P is best determined by calibration with field data, as discussed in the
following section. A value of $=0.032 was selected. This and other parameters
are summarized in Table 12.
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Figure 38. Grid of existing harbor

In addition to existing conditions, 11 harbor modification plans were
specified for evaluation, as discussed in Chapter 1 and summarized in Table 13.
The existing harbor grid was modified to represent each alternative config-
uration. Grid characteristics for each configuration are included in Table 11.
Short wave reflection coefficients were modified as appropriate for the plan
grids. General guidelines were K = 0.5 along piers (mainly due to steep, partially
revetted slopes under piers) and K = 0.35 along breakwater extensions.
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Table 11
Grid Sizes

Number of:

Solid Semicircle Length

Harbor Boundary Boundary of Typical
Plan Elements Nodes Nodes Nodes Element (ft)
Existing 22908 11801 497 196 35.5
Plan 1 23351 12045 542 196 35.5
Plan 2 23468 12106 547 196 35.5
Plan 3a 23393 12053 516 196 35.5
Plan 3b 23331 12036 544 196 35.5
Plan 3¢ 23286 12024 565 196 35.5
Plan 4a 22562 11627 495 196 35.5
Plan 4b 22500 11610 523 196 35.5
Plan 4¢ 22455 11598 544 196 35.5
Plan 5 21696 11216 539 196 35.5
Plan 6 22500 11610 523 196 35.5
Plan 7 21239 10998 560 196 35.5
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Figure 40. Wave reflection coefficient values, short waves, existing harbor
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Table 12
Parameter Values Used in HARBD

Value
Parameter ShortWaves | Long Waves
Botiom friction, £ co 0.032
Coastiine reflection, K, .. 1.0 1.0
Depth in infinite region, d,, 45.5#t 455 ¢t
Table 13
Harbor Alternatives for Numerical Modeling
Alternative Plan
Features 1 » a 4 5 6 7
Passenger Ship Pler
Blip cut into existing fill X X
Notch cut inte existing filt X
Pier adiacent to existing fil X X X
New fill area in SW area of harbor X %
Protective Stub Added to End of West Breakwater x X x %

{test lengths of 0, 600, 1,000 #)

Barge Pier in Canoe Club Area

Aligned north/south (Concept C) %

Parallel to Pier 2 {Concept 12) X X X X x X
Pler 1 Extension X X X X X X X
T-Pler for Fuel Barges X X X x % X X

{dredoe & revet between Plers 14 3)

Argas with 35- Project Depth Dredged 1o 38-4 e %
Depth
Selected Cornbination of Features X

! Breakwater stub of 600-% length only.

Calibration and validation

The availability of extensive field data at Kahului Harbor allowed a detailed
calibration and validation of the numerical harbor response model. Both short
and long wave responses were considered. Data from the time period Nov 93 -
Sep 94 were used for calibration and validation, as discussed in Chapter 2.
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Short waves. Four high wave events during January and March 1994 were
selected for short wave calibration (Table 14). HARBD was run for the incident
wave periods and directions described in the following section and the output.
was post-processed to give spectral estimates of the four events. Reflection
coefficients were adjusted within reasonable ranges to achieve a good fit between
field data and model results (Figure 41). The principal adjustment was the
reflection coefficient
used along the piers.
As-built plans for the 0.8 —— T
commercial piers and 1 6 osuss R
laboratory studies of a O7r| & B i e
similar configuration of L e A
pile-supported Pier 0.6 _ ........ ........ ........ ......... ,/ ..... / ...... -
with underlying slope L '
(Allsop 1990) were
used to determine
reasonable ranges for P o
I'CﬂCCtiOIl coefﬁcient. 0.3 beeeen ........ ///-\) :BOCk Brosm &: -
Only the 192-, 203-, 00 Lo st L Comoeciun | ]
and 214-deg incident ' A
wave directions were o1 Lo smANC L i
used during the calibra- L &)
tion and validation 0.0 e
phase of the study. ' o7
The remaining two
directions were added
later to more Figure 41. Model short wave calibration to four
completely represent storm events
the range of diffraction
possibilities for alternatives involving the western portion of the harbor.

05 b - ........ ........ PRSUON ........ LAY TN Lo d

(Aomp,s)model

04 T AR L Ao — — —J ]

(Acmp,s)horbor gage

Table 14 :
Field Cases for Short Wave Model Calibration, Array

Date Hour H, T
cm sec

A

3Jan 94 1300 212 14.8

20 Jan 94 1300 247 ' 10.1 202

31Jan 94 0700 162 17.9 191

13 Mar 94 1300 195 8.9 205

A comparison of HARBD results and field data with published diffraction
patterns through a breakwater gap, done as part of the calibration process,
showed the dominance of diffraction between the entrance and interior harbor
locations. Goda (1985) gives diffraction of a directional spectrum through a gap
between two straight, colinear breakwaters in uniform depth. Bowers and
Welsby (1982) report on laboratory tests of several other breakwater gap
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configurations, including one similar to the Kahului breakwaters. Their tests, as
well as others by Blue and Johnson (1949), show that the relative rotation of the
breakwaters makes little difference in the diffraction pattern for wave periods of
concern here. However, the presence of rubble on the inside of the breakwaters
causes significant absorption and dissipation relative to the classical vertical wall
breakwater. Appropriate adjustment factors taken from Bowers and Welsby
(1982) were applied to the spectral diffraction results of Goda (1985) for
comparison to two of the field calibration events.

The calibrated short
wave model was run in a 0.8 —
spectral mode for the T, o7l & (D2 .. b S
and 6, combinations | ®m  BackBasin LY
represented in the field 0.6 ’ Cfmne' Fntrcnfe SRR & ] ‘» .
data summaries of S R
Appendix B. Comparmg % 05 ........ ......... ......... ........ ........ ..... 4
themodel resultstofield | £ f ]
data validates the numer- g T g 4 g : :
ical model againstan 11- | < ozl i il ]
month summary of gage L : % I R S
data (Figure 42). The 0.2 ooy ‘ ¥ . SU ........ ....... 4
validation comparison is F g , S : :
generally comparable to 0.1 F- O 4
the calibration results. A : L
The agreement at Pier 2 000 01 02 03 04 05 06 07 08
1; excellent. .Tthe tmodel (Aomp,s)harbor gage
shows a persisten

tendency to under-
estimate the amplification
factor at the other gages.
The tendency is more
evident than in the initial storm calibration, particularly at Canoe Club and Back
Basin. In most cases, it is greater than one standard deviation of the field data.
The possibility of incorrect reflection coefficients and/or bathymetry in these
shallow areas was explored within reasonable ranges, but the general level of
agreement could not be improved.

Figure 42. Model short wave validation to
11 months of gage data

Long waves. Long wave calibration was aimed at adjusting bottom friction S
to approximately match amplification factors between model and data. The
reflection coefficient K, was set to 1.0. Only the lower frequencies (0.003-

0.010 Hz or 100- to 333-sec period) were considered because most prominent
resonant peaks are in this range and K, =1.0 is more strictly correct at low
frequencies. Only resonant peaks were considered in calibration because they
are the features of greatest interest and are most sensitive to the choice of 8. A
value of £=0.032 was found to give a reasonably good match at all peaks in the
selected frequency range and at all harbor gages, as illustrated in Figure 43.
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Channel Entrance
[ ] Field
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0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
Frequency

Figure 43. Model long wave calibration

Field and model amplification factors over the full range of long wave
frequencies are compared in Figure 44. The general agreement is reasonable.
The model shows several overly large peaks, especially at frequencies higher
than the 0.01-Hz limit considered in calibration.
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Figure 44. Long wave comparison of average gage spectra and model
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Test Procedures and Calculations

Incident wave conditions

A range of short and long wave conditions incident to Kahului Harbor was
considered. A representative range of wave periods and directions which could
cause damaging waves inside the harbor was included, based on field measure-

ments.

The short wave periods and
approach directions considered are
given in Table 15. These conditions
provide reasonable coverage of the
field measurements summarized in
Figures 18 and 19. The shortest
wave period, representative of strong
local storms, is 2 sec shorter than the
grid design period. Past experience
has shown that the model still
provides adequate results for small
increments below the grid design
period. The longest period represents
a very long swell condition. Direc-
tions were chosen to include likely
approach directions to the harbor
entrance and to give adequate repre-
sentation of the directional spectrum
in post-processing. They were also
chosen after review of directional
response sensitivity runs at a selected
swell period. Test directions were
reckoned in 11-deg increments
beginning with 192 deg (coming

Table 15
Summary of incident Short
Wave Conditions

Wave Period § Wave Direction
{sec) deg, going toward

8 17

9 18

10 19

11 20

12 |21

13 | 22

14 | 23

15 1 24

16

from, relative to true north). Incident wave directions and the angular orientation
of the seaward semicircular model boundary are illustrated in Figure 45.

For the study of existing harbor conditions and comparison of alternatives,
HARBD was run with the full set of short wave periods and directions in all
possible combinations. Model results were then evaluated for directional spectra
with T, and 6, values equivalent to the period and direction values used in the

initial HARBD runs (Table 15).
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Incident long wave conditions con-
sidered are given in Table 16. A fine
resolution in wave frequency was used over
the full range of possible resonant conditions
to ensure that all important peaks were
identified. A total of 468 periods were
considered. Only one approach direction is
included, since past studies have indicated
that harbor response is relatively insensitive
to incident long wave direction. This
direction represents a wave directly
approaching the harbor entrance from deep
water.

One water level was tested. The tide
range at Kahului Harbor is relatively small,
with a mean range of 1.9 ft. Harbor wave
response is unlikely to vary much with water
level over this tidal range. The water level
was selected as mean lower low water, the
reference datum for bathymetric data.

Table 16

Summary of
Incident Long Wave
Conditions

Wave Direction

(deg, going
toward)

! Frequency increments are
0.0001 Hz for periods of 25-
80 sec and 0.00006 Hz for
periods of 80-1000 sec.

KAHULUI HARBOR

1000

500 1500

Figure 45. Incident wave directions
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Calculation of spectra

Numerical model test results for short waves in Kahului Harbor are all based
on spectral post-processing of the initial HARBD runs. Hence, short wave
amplification factors are all in the form of (A ,,,,) in Equation 17. This approach
requires, first, that HARBD be run with the range of wave periods and directions
to be considered in the spectral calculations. Second, values of peak wave period
T, corresponding to the peak spectral frequency, wave approach direction &,
spectral peak enhancement factor vy, and directional spreading factor s must be
specified. The T,and 6, values were chosen to represent wind wave and swell
conditions at the harbor, as discussed in the section “Incident wave conditions”
(pages 61 and 62).

Values for y and s were approximated by relating the guidance in
Tables 9 and 10 to 7, values. High energy waves, of concern for harbor design,
with T, up to 10 sec were assumed to be
growing seas. Parameters y and s were set
to 3.3 and 10, respectively. Waves with T,

greater than 10 sec were treated as swell.

As swell T, increases, the swell is Z:I:::ol;,ma te

expected to have an increasingly peaked Relationships Among

frequency spectrum and narrow direc- T d

tional spread. To represent the spectrum p Y, and s

for the range of swell considered, values - y s

of v and s were scaled to fall between the (sec)

values for growing seas and maximum ]

values established for old swell 8 33 110

(Table 17). 9 33 110

Output basins 10 23 10

1 4 15

In order to get special coverage of 12 4 20

areas where harbor traffic would most 13 5 o5

likely be affected by wave conditions,

38 possible output locations or “basins” 14 5 30

were selected to cover all harbor layouts. 15 6 35

A basin is a small cluster of elements over 16 6 40

which the HARBD response is averaged

to give a more representative output. 17 7 45

Whenever possible, basins were posi- 18 7 50

tioned to coincide with basins of other

plans, particularly those of the existing 12 8 35

harbor (Figure 46). Basin locations for 20 8 60

alternative plans are given in Appendix E. 21 9 65

In general, primary output basins define

five areas of interest: Pier 1 (Basins 2-6), 22 9 70

Piers 2 and 3 (Basins 7-10), recreational 23 10 75

boat ramp (Basin 21), modified barge pier, o4 10 75

and proposed passenger pier. Locations
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and defining basins of barge and passenger piers vary with plan. Each basin in
this study contains 22-28 elements. HARBD output information was saved at
each of these locations in addition to the detailed output at nodes.

@
O
®
o ® 4 ®
@ %)
@ ®
® o ®
@ © @
® S
® ®e
@

Figure 46. Output basins, existing harbor
Procedures for evaluating operational performance at a pier

One objective of this study was to develop and implement a more quantitative
procedure for comparing the operational acceptability of different harbor plans
subjected to long waves using HARBD. The procedures are described in the

following paragraphs.

Existing criteria. The following criteria are relevant to operational
performance at a pier:

1. Wilson (1967) suggests that a wharf will be operationally acceptable if
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-I; < 0.0038 ft/sec

(18)
LT{ <0.0012 m /s

where H and T are long wave height and period measured in an adjacent
corner. He refers to this as a slope criterion since it was derived from H/L for
a shallow-water wave. The H and T combinations for threshold damage are
shown in Figure 47.

600
570
540
510
480

420 : - =
330 — - =
360 '
(¢} Y -
o ING DAMAGE =
270 4 E ZONE T
240 s
210 s Z
180 ,
150 —= =
120 EDAMAGE
90 IZONE
60 : =t
30 — =
0 : ¥
1.00 10.00 _ 100.00
Wave Height, cm

JJ..

Wave Perlod, sec

Figure 47. Wilson's threshold of surge damage for moored ships (from
Seabergh and Thomas (1995))

2. Seabergh and Thomas (1995) reference unpublished long-wave significant
height criteria suggested by Walker and Szwetlot (H,,,<5-10 cm for
100 percent operational efficiency with man-made fiber mooring lines;
H,,,,,<10-15 cm with steel wire mooring lines) and Burke for the )

Los Angeles Long Beach Harbor complex. Based on these and Wilson’s

(1967) published criterion, Seabergh and Thomas use the following criteria

as indicators of successful operational conditions:

H,, < 5 cm  for T=41-205 sec
H, < 10 cm  for T=205-1,024 sec (19)

3. The Permanent International Association of Navigation Congresses
(PIANC) (1995) gives criteria for each degree of freedom of a moored ship
(surge, sway, heave, etc.). The criteria for horizontal translational motions
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are given in terms of distance and velocity. Since horizontal motions are
highly constrained by mooring lines, the velocity criteria seem more useful
for present purposes (though they are stated to be applicable only for
fishing vessels, coasters, freighters, ferries, and Ro-Ro vessels). Velocity
criteria vary with size of ship, but they are as follows:

u, <03-06 m/s

u.,. <10-2.0 ft/sec (20)

4. Damage at a wharf presumably occurs when forces (in mooring lines,
against fenders, against ship hull, etc.) are too great. Since force is equal
to mass times acceleration, it seems that an operational criterion based on
long wave accelerations would be most relevant to the physical problem.

Intercomparison of existing criteria. It is useful to consider how consistent
the above four criteria are with each other. Slope, velocity, and acceleration
criteria can be inter-related by using equations for an idealized two-dimensional
standing wave. Velocity can be expressed as (Sorensen 1993)

_ Hc .
= 7 sin kx sin ot @1

where
k = wave number, = 2n
L
x = horizontal coordinate
o= frequency

t =time

Differentiating with respect to time gives an expression for acceleration, a

a = f_‘ﬁ = Edgo sin kx cos ot

dt

2nHc .
= H, sin kx cos ot

(Zn\]g] I—; sin kx cos ot

The term in parentheses is relatively constant (assuming that d is relatively
constant). The key variable is H/T. Thus it is clear that Wilson’s slope criterion

(22)
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is basically an acceleration criterion as well. Maximum acceleration can also be
written as

Qe =

E 21{ = 211; 1‘..%
dT T @23)

Thus the acceleration criterion is similar to the velocity criterion with the
addition of a scaling by the wave period T. A critical threshold acceleration for
harbor operations can be defined from Wilson’s slope criterion as

a, = 2m % (-{;-) . = Zn\J—% x (0.0038 ft/sec) (24)

Now the velocity criterion (No. 3) is examined. Maximum velocity in a
standing wave (from Equation 21) is

He _ Hfegd _ .|z
= — = —— = H —

or, rearranging terms,

d
H = I ot

Putting this expression for H into Wilson’s criterion gives

“ d ft/ ]
—_— — < 00088 sec

or

< 000387, &8 in i/
u,. \l: u,, in ft/sec (28)

If representative values for T and d are taken, this expression can be evaluated
and compared to PIANC’s criterion. Assume d=32 ft and \lg = 1, and T ranges

from 40 sec to 400 sec. Then
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u = 0.15-1.50 ft/sec

max

(29)

which is reasonably consistent with the PIANC criterion in Equation 20 (though
the threshold velocity for damage at the shorter periods is much lower than the

PIANC values).

Seabergh and Thomas’
criteria (No. 2) can be
compared directly with
Wilson’s criterion (No. 1)
(Table 18). Slope values at
. the high end of the range
defined by Seabergh and
Thomas’ criteria are
reasonably comparable to
Wilson’s criterion.

In conclusion, the four
criteria are reasonably
consistent. Considering the
major simplifications in the
overall problem (partic-
ularly the lack of explicit
consideration of the type of
vessel and mooring system),

Table 18
Slope' Values Defined By Seabergh
and Thomas’ (1995) Long Wave

Criteria
Wave Period, T (sec)
Hm
(cm) 41 205 1,024
5 0.0040 0.0008
10 0.0016 0.0003

" Slope values are defined as H, /T, in ftisec for
comparison with Wilson’s criterion of H/7<0.0038 ft/sec

differences between criteria seem relatively minor.

Adaptation of HARBD output for comparing harbor plans to operational
criteria. None of the criteria seems ideally suited to the physical problem and
HARBD’s capabilities, but HARBD output can be adapted to give quantitative
insight relative to the criteria. More importantly, the criteria provide a conve-
nient yardstick for comparing operational performance of alternative plans to the
existing harbor. Thus operational experience at existing piers can be applied to
piers in the alternative plans. The Wilson and Seabergh and Thomas criteria
(Nos. 1 and 2) were used in this study because they are best suited to the

standard HARBD output.
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5 Harbor Response to Wind
Waves and Swell

Numerical model studies of the harbor response to wind waves and swell were
directed primarily toward assessing the operational performance of alternative
harbor modifications. Results, especially at existing and proposed new pier
areas, are summarized in this chapter. Amplification factors are presented in the
following section. The final section gives H, values exceeded 10 percent and
1 percent of the time, a result more directly applicable to operational perfor-
mance. The H, values are derived from a combination of amplification factors
from the numerical model and wave measurements at the directional array
outside the harbor. They are compared to operational criteria for wind waves
and swell.

Amplification Factors

Amplification factors, representing directionally spread short wave spectra in
the form of (A,,,) 5 in Equation 17, were calculated for a variety of wind wave
and swell conditions. Figure 48 shows examples of a short period swell and a
long period swell coming from two different directions. Tables of (4, 4in the
existing harbor for various incident peak wave periods and directions (7' ,and 6,)
are given in Appendix F.

For a more concise comparison between the existing harbor and alternative
plans, average values of (A,,,,) were computed for each basin across wave
periods ranging from 10 sec through 20 sec. Figure 49 shows results for the
existing harbor and three plans. The (A,,,) schanges progressively as incident
wave direction changes. As would be expected, amplification tends to be greater
for directions of more direct approach to the basins. Also it is evident that the
proposed new passenger pier locations in these particular plans have an exposure
to wind waves and swell which is significantly greater than that at the existing
Pier 1 (Basins 4-6).

As illustrated in Figure 49, the average amplification factor changes between
plans only if there are significant changes in basin location (as in the passenger
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Figure 48. Example swell amplification factor contours, existing harbor

70

pier moving to different locations) or sheltering by the breakwater extension.
Piers 1-3 behave similarly in the various plans. The wind wave and swell
response in the harbor is basically a result of diffraction through the breakwater
gap. Boundary reflection characteristics have a localized effect on the waves, but
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changes in the western half of the harbor have virtually no effect on the existing
pier areas.

An even more concise description of (A ) at each basin can be obtained by
considering wave climate as well. A climate-based amplification factor is
calculated for each basin as

N, N N, ,
Aametmae = X2 2 Aameg ) 7 (30)

k=1 total

~

where

jk = indices denoting the j* period interval and k* direction interval,
where the intervals are based on the incident wave conditions in

Table 15
((Apmp) o)y = spectral amplification factor for the j* period and k™ direction
N, = number of array records with 7, and &, in the j * and k* period

and direction intervals
N,,.; = total number of records from the array gage

This climate-based amplification factor is given in Appendix F for every basin
and harbor plan. Array data used in the calculation were from Nov 93 - Sep 94,
as discussed in Chapter 2.

One complication which arose during the wind wave and swell studies was
inconsistent results at the boat ramp (Basin 21) between some of the plans. After
investigation, it was discovered that bottom friction has a signficant effect at this
location because of the expanse of very shallow water approaching it. Rough
correction factors were developed from a small number of runs with £=0.032 and
applied to Basin 21 for all plans. Results presented here include that correction.

Evaluation Against Operational Criteria for Wind
Waves and Swell

Standard operational criteria used by the U.S. Army Corps of Engineers
(USACE) for wind waves and swell in shallow draft harbors are:

a. Wave height in berthing areas will not exceed 1 ft more than 10 percent of
the time.

b. Wave height in entrance and access channels and turning basins will not
exceed 2 ft more than 10 percent of the time.
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Existing
Plan 4b
Plan 6
Plon7

Amplification Factor

36 37 38

Figure 49. Comparison of (A_ ) . averaged over periods of 10-20 sec at piers,
existing harbor and Plans 4b, 6, and 7 (see Figure 46 and

Appendix E for basin locations)
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Standard criteria for wind waves and swell in deep draft harbors, such as Kahului
Harbor, are not so well established. However, the criteria for shallow draft
harbors can provide a useful basis for comparing alternative plans at Kahului
Harbor.

Another, perhaps more valuable, criterion for evaluating proposed new pier
areas is to conduct comparisons with existing piers. Many years of practical
experience at Piers 1 and 2 can then be approximately transferred to new plans.

Wave heights for assessing the USACE criteria were computed by combining
the time-history of array gage parameters over the time period November 1993
through September 1994 with numerical model results to create a time-history of
wave heights at each harbor basin. For each array record, the corresponding
wave height at a harbor basin is

(Hs)harbor = (Aamp)tﬁ' x (Hs)ﬂ’m)’ : (31)

where

(H)uusor =  significant wave height at a harbor basin

(Aum)s = spectral amplification factor interpolated between values for
periods and directions in Table 15 to represent T, and 6, at the
array

(H,),,., = significant wave height at the array

The 11-month time-history of (H )., at each basin was sorted into
descending order and the value of H, which was exceeded 10 percent of the time
was identified. The H, value exceeded 1 percent of the time was also identified.
The H, with 1 percent exceedance relates to a more demanding operational
condition, which may be more applicable to large commercial vessels.

Significant wave heights exceeded 10 percent of the time are less than 1 ft at
all existing and most proposed pier areas (Figure 50). The existing harbor is
included in each panel of the figure to give a common reference. Existing
Piers 1-3 extend approximately between Basins 3-9. Basin 3, which is centered
on the proposed extension of Pier 1, has higher wave conditions than any basins
along existing piers. Basin 2, the location of a possible future extension of
Pier 1, has wave heights approximately twice as high as the main existing Pier 1
(Basins 4 and 5). Wave heights at the exposed end of Pier 2 (Basin 10) also
approach this level. The significant wave height exceeded 10 percent of the time
computed directly from Pier 2 wave gage results is 0.39 ft, which compares well
with corresponding numerical model results at Basin 8 in the existing harbor and
helps to validate the model wave heights (Table 19).
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Except for Plan 2, wave heights at the proposed new barge pier (Basins 25,
26, and 30) range between those near the center of Pier 2 (Basin 9) to the
exposed end of Pier 2 (Basin 10), depending on the harbor plan. The boat ramp

is considerably more
protected in most plans
relative to the existing
harbor. Proposed
passenger pier locations
in the alternative plans
have a wide range of
protection. The best
protected alternatives
give wave conditions
similar to the existing
Pier 1. The most
exposed alternative (Plan
4a) gives waves
signficantly higher than
at any existing pier
locations.

Table 19 :

Significant Wave Heights Exceeded

10 Percent and 1 Percent of the Time at

Field Gages

Gage H, with 10% H, with 1%
Exceedance (ft) | Exceedance (ft)

Pier 2 0.39 0.63

Canoe Club 1.15 1.65

Back Basin 1.26 1.99

Channel 3.10 463

Entrance

The H, values exceeded 1 percent of the time are considerably higher than
those exceeded 10 percent of the time, but show similar relative trends
(Figure 51). Existing pier areas still fall below the 1-ft wave height threshold,
with the exception of the exposed end of Pier 2 (Basin 10) and, possibly, the
northwest end of Pier 1. Proposed new barge and passenger piers are below the
threshold in some plans and above in others.
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Figure 50. Comparison of H_ exceeded 10 percent of the time at piers
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6 Harbor Oscillations

To evaluate harbor resonance characteristics, the HARBD numerical model
was run for the existing harbor and all alternative plans. Incident long wave
periods ranged from 25 sec to 1,000 sec in very fine increments, as discussed in
Chapter 4. These evaluations were included because oscillations are an impor-
tant part of interpreting the existing harbor wave response (as evidenced by gage
data in the harbor), and modifications to the harbor can potentially lead to
increased operational problems due to harbor oscillations. Amplification factor
results are presented in the following section. Additional results more closely
related to operational performance criteria are given in the final section.

Amplification Factors

Ampliﬁcation factors for (1) Fundamentdl Mode
the long waves involved in (First Hormonic)
harbor oscillation behave B %
differently than those for P
wind waves and swell. Long \"
waves, because of their =" Node
length relative to harbor ~~ Antinodes S
dimensions and their (2) Second Mode
reflectivity from harbor (Second Harmonic)

boundaries, form standing
wave patterns in the harbor. ~ _
Standing wave behavior in a BN /-\//
simple closed basin of /\ S \
uniform depth is illustrated in
Figure 52. In the funda-

3) Third Mode

mental mode of oscillation, (Third Harmonic)
antinodes occur at both basin .

all i ~ 2
walls and a node midway N \/\/ ~
between walls. Second and S
third modes of oscillation are 7 N7 ,\/\\
also illustrated. Antinodes £8
always occur at the walls.
Additional antinodes and Figure 52. Harbor oscillation

nodes occur at regular definitions

Chapter 6 Harbor Oscillations

77




78

intervals between walls, with the number of antinodes and nodes dependent on
the mode of oscillation.

The water surface in a standing wave has its greatest vertical motion at
antinodes. There is no vertical movement at an ideal node, but horizontal
velocities reach a maximum there. In terms of amplification factors, this
behavior gives large values of A,,,, at antinodes and small values around nodes.
Contrary to wind waves and swell, small values of A ,,,,,are not necessarily
indicative of a tranquil harbor area.

Phases in a standing wave also behave differently than for typical wind waves
and swell. For example, the water surface in the fundamental mode of oscillation
in Figure 52 simultaneously reaches a maximum at every point to the left of the
node. These points are all in phase. At the same time, every point to the right of
the node reaches a minimum value. These points are also in phase with each
other but exactly out of phase with the points to the left of the node. Thus phases
in a simple standing wave are constant between an antinode and node. They
quickly change by 180 deg (or 7 radians) across the node and remain constant up
to the next node or boundary.

Amplification factors for pier areas in the existing harbor are shown as a
function of wave frequency in Figure 53. Some frequencies produce a strong
resonant amplification, with peak amplification factors between about 2 and 10.
Many of the same resonant frequencies appear at all basins, though the strength
of amplification can vary considerably between basins. A large peak at very low
frequency (0.0007 Hz or 1,500-sec period) shows at every basin and plan. This
peak represents the Helmholtz (or grave) mode of oscillation, in which the entire
harbor rises and falls in unison. Phase is constant over the whole harbor. This
peak also dominates long wave spectra at the array (Figure 20).

Amplification factor and phase contour plots for the four highest resonant
peaks (excluding Helmholtz resonance) show oscillation patterns in the existing
harbor. In the amplification factor plots, areas of high amplification are evident
as darker shades of gray (Figure 54). Corresponding phase contours are shown
in Figure 55. Areas in which phase contours are tightly bunched indicate nodal
areas. As would be expected for standing waves, nodal lines in Figure 55 coin-
cide with low amplification factors in Figure 54. The phase plots also indicate
areas of the harbor which rise and fall together during the resonant condition
(same gray shade). Thus the oscillation patterns can be interpreted.

The 212.77-sec resonant period, peak A, shown in Figure 54 represents a
relatively simple rocking oscillation between Piers 1-3, the south end of the
harbor, and the boat ramp area. A single nodal line runs across the harbor in a
generally east-west direction. The 176.99-sec resonance, peak B, is primarily a
rocking between Piers 1-3 and the coral stockpile along the west breakwater.
The shorter period oscillations are more complex patterns, though they generally
indicate a strong nodal area at or near Pier 1 and the seaward end of Pier 2. The
peak D resonance is an interesting pattern between the corners of Pier 1 and
Pier 2.
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Figure 53. Long wave response, existing harbor, Piers 1-3

The long wave amplification factors shown here may be overestimated for
resonant peaks at periods less than about 100 sec. The wave reflection coeffi-
cient at all solid boundaries was set to 1.0 for all long wave runs, but Figure 44
shows some evidence that peaks at the shorter long wave periods tend to be
overestimated. The peak D case is particularly evident. Some reduction in
reflection coefficient as wave period decreases could be expected physically.
This case was rerun with K,=0.95 along all boundaries. The height of peak D
was reduced from 4.5 to near 1.0. Additional tests with K =0.95 helped confirm
that this choice would improve the long wave calibration at periods between
25 sec and 100 sec. It was not practical to refine K, values and revise long wave
runs for all plans, and the initial runs with K =1.0 are considered adequate for

evaluating alternative plans.

Amplification factor plots for alternative plans are given in Appendices G and
H. Plots of A,,,, versus frequency (Appendix G) are grouped so that the existing
and proposed harbor plans can be easily compared at each pier area. Amplifica-
tion factor and phase contour plots for the main resonant frequencies are given in

Appendix H.

A more quantitative comparison between the existing harbor and alternative
plans can be obtained by averaging amplification factors across a range of long
wave frequencies. The root-mean-square (RMS) amplification factor was
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computed for each plan (Figure 56). The RMS is used because squared
amplification factors are indicative of wave energy, a more relevant basis for
comparison than wave height. In computing the RMS, frequencies lower than
0.0025 Hz (400 sec) were not included to avoid domination by the Helmholtz
peak common to all plans.

The existing harbor and all plans show minimum values of the RMS amplifi-
cation factor around the middle of Pier 1 and end of Pier 2 (Basins 4 and 10).
Thus, these tend to be nodal areas. Another notable feature of the figure is the
exceptionally high amplifications at the proposed passenger pier in Plans 1 and 2.
Basin 30, representing the proposed barge pier for most plans, was inadvertently
omitted in Plan 2 long wave runs. Basin 31, which was very similar to Basin 30
in other long wave runs, is used in its place in the long wave summaries in this
report.

Evaluation Against Operational Criteria for Long
Waves

Procedures for evaluating the operational acceptability of different harbor
plans subjected to long waves are reviewed in Chapter 4. This study used a
variation of the most direct procedure (Seabergh and Thomas 1995). The
percent of observations with H,,,,, greater than 10 cm was computed for each
basin and plan. However, the range of long wave frequencies was divided into
two segments having periods ranging from 30-100 sec and 100-400 sec. The
choice of 100 sec as the dividing point was based on an expected sensitivity of
barges to periods in the shorter period range and a lower confidence in that range
because of the concern that K, may be slightly high. H,,,, is calculated as

(Aamp) harbor

(Aa,,,p)array ) Eam’y(f;) (32)

NZ
Hs,long = 4 E

i=N,

where

NN, = spectral line numbers in model corresponding to the
period range being considered (30-100 sec or 100-
400 sec)

(A imp)arbor (Aamp)armsy = amniplification factors for i* spectral line in model

E,..(f) = spectral energy at array for i* spectral line in model
(interpolated from gage data), in units of cm?®

Amplification factor at the array is needed as a divisor because long waves can
easily reflect back to the array. Spectral energy at the array cannot be considered
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as purely incident energy. (A amp) array WS constrained to be greater than or equal
to 1.0 in this calculation.

Using Equation 32 and the 11-month field data set, the percent of obser-
vations with H, ;,,.>10 cm was calculated. Results for the 100-sec to 400-sec
range are similar to the RMS amplification factor results (Figure 57). Results for
the 30-sec to 100-sec range are more scattered (Figure 58). Corresponding
information from the field gages is given in Table 20 for comparison.

" A slope criterion as

suggested by Wilson Table 20

(1967) was also eval- Percent Occurrence of H; 0,210 cm at
uated. Wave height for Field Gages

the_ cntenor_l was an H‘»"’"S Wave Period Range (sec)
as in Equation 32, with Gage

the summation taken over 100-400 30-100
nine successive model Pier 2 38 14
frequencies. The number

nine was chosen because Canoe Club 08 2.1
nine successive frequen- Back Basin 0.1 0.2
cies encompass a broad

enough band to include Channel Entrance 22 1.6
most or all of any peak in Array 0.4 3.0

the model spectral

response. The H,,,,, was

multiplied by the center

frequency to give a slope. If any combination of nine successive frequencies
gave a slope exceeding Wilson’s criterion, the record was counted as having
exceeded the threshold. Period ranges of 30-100 sec and 100-400 sec were
evaluated separately as before. Results are given in Appendix G.

An additional operational guideline is based on the value of A ,,,, for the
higher resonant peaks. Experience with Los Angeles and Long Beach Harbors
has indicated that if A,,,,, is greater than about 5, some operational difficulties
may be encountered. IfA,,,,is greater than 10, major operational problems can
be expected.! This guideline may be applied to the plots in Appendix G. If the
very low frequency Helmholtz peak is excluded, Plans 1, 2, 5, and 7 all appear to
be operationally unacceptable as presently formulated. They all have basins at
which A4,,,,, exceeds 10.

Results are best judged by comparison to the existing piers. Plans 1 and
2 clearly have potential problems at the passenger pier (Basin 23) in the 100- to
400-sec range. The magnitude of response in a range which affects ships of this
size is large enough that this facility would likely be unacceptable. Plans 5 and
7 also tend toward elevated responses.

! Personal Communication, William C. Seabergh, Research Hydraulic Engineer, U.S. Army Engineer Waterways

Experiment Station, Vicksburg, MS.
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Most plans indicate improved conditions at the new barge facility on the south
side of Pier 2 relative to existing piers. The 30- to 100-sec period range is
considered especially important for barge response. Most plans show improved
conditions for passenger vessels, too. The 100- to 400-sec range is probably
more critical for these vessels.
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7 Conclusions and
Recommendations

Studies of the wave response of Kahului Harbor have produced valuable
information about the existing harbor and possible modifications. Field
measurements taken over a period of 18 months at a deepwater directional buoy,
a directional array outside the harbor, and four gages inside the harbor were
extremely helpful in understanding present harbor behavior. Numerical
modeling of the existing harbor also helped to explain the response to short and
long waves.

The numerical model was used to simulate the behavior of 11 alternative
modifications to the harbor. Model results are compared with criteria for
operational acceptability and with experience in the existing harbor to the extent
possible. The effectiveness of proposed new harbor areas for wind wave and
swell protection often has little relationship to protection from oscillations.
These two aspects of pier operability must both be considered in judging success
of the alternative plans.

An overview of performance of the alternative plans is given by their success
relative to a simple, meaningful criterion. For wind waves and swell, success
was defined as having H> 1 ft less than 1 percent of the time at all basins along
the pier (Table 21). The 1 percent level was chosen because the existing Piers 1
and 2 (which are considered successful) meet this criterion but the seaward ends
of Piers 1 and 2 (which are believed to be marginal) slightly exceed the criterion.
Thus successful piers in Table 21 should be comparable or better than the exis-
ting facilities for wind waves and swell.

A similar overview of plan performance for harbor oscillations is given in
Tables 22 and 23. The criteria are expressed in terms of percent exceedances of
H ;=10 cm. The threshold percent values were selected to be slightly higher

5

than the existing harbor facilities.
Specific conclusions and recommendations are as follows:

a. Plan 1. Not recommended because of large long wave amplifications at
proposed passenger pier.
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b. Plan 2. Not recommended because of large long wave amplifications at
proposed passenger pier.

c. Plan 3a. Generally acceptable for both short and long waves. The long
wave amplification factor at one resonance is quite high at Piers 1-3 and
the proposed passenger pier.

d. Plan 3b. Generally acceptable.
e. Plan 3c. Generally acceptable.

f. Plan 4a. Not recommended because of large wind waves and swell at the
proposed passenger pier.

g. Plan 4b. Generally acceptable. Fairly large wind waves and swell can be
expected at the proposed passenger pier.

h. Plan 4c. Generally acceptable.

i. Plan 5. Not recommended because of large long wave amplifications at
proposed barge and passenger piers.

Jj. Plan 6. Generally acceptable. Fairly large wind waves and swell can be
expected at the proposed passenger pier.

k. Plan7. Notrecommended because of large long wave amplifications at
proposed barge and passenger piers.

All of the plans, including those designated as acceptable, include some long
wave resonant peaks which are larger than in the existing harbor. These seem to
be a likely consequence of creating new pier areas. It is assumed that peaks with
amplification factors well under 10 will not cause any major operational diffi-
culties.

Some of the limitations in the plans tested may be overcome by prudent
design. For example, the fill area in the southwest area of the harbor created
strong oscillations. However, the same facility could be designed as a pile-
supported structure and the strong oscillations would be avoided. The
breakwater extension present in some of the plans might be designed without a
core, allowing it to block wind waves and swell but remain transparent to long
waves.

A physical model study to refine and validate the preferred plan(s) is strongly
recommended as a final phase of the studies. The physical modeling component
was part of the originally proposed WES study.
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Table 21

Plans with H>1 ft Less Than 1 Percent of the Time

Plan

Area

Pier 1

Piers2&3

Barge

Boat Ramp

Passenger Pier

Existing

X

1

2

3a

3b

Table 22

Plans with H, ,,..> 10 cm Less Than 16 Percent of the Time, 100- to
400-sec Periods

Plan Area
Pier 1 Piers2 &3 | Barge Boat Ramp Passenger Pier ||

Existing X X X

1 X X X X

2 X X X X

3a X X X b X
3b x X b 4 X X
3¢ X X b X
4a X X X X X
4b b 4 X X X X
4c X X X X X
5 X X X X
6 X X X X X
7 X X X X X
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Table 23
Plans with H,,,,.>10 cm Less Than 7 Percent of the Time, 30- to
100-sec Periods
Plan Area
Pier 1 Piers2&3 Barge Boat Ramp Passenger Pier
Existing X X
1 X X X X
2 X X X X
3a .x X x X x
3b X X X X X
3¢ X X X X X
4a b4 X X X b 4
4b X X X X X
4c X X X X X
5 X X X
6 X X X b 4 X
7 X
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Table A1
Number of Occurrences of T, and &, Array
T, 6, (deg azimuth)
(se) <190 190- 192- 194- 196- 198- 200- 202- 204- 206- 208- 210-
<8 0 2 1 7 4 3 10 36 43 49 32 33
8 0 0 1 2 1 10 21 39 42 39 33 14
9- 3 1 0 2 7 16 46 22 35 25 13 6
10- 2 1 3 3 9 19 37 42 36 15 8 4
11- 13 5 12 14 18 27 33 29 26 7 4 2
12- 6 9 3 8 20 24 27 29 17 8 2 0
13- 5 5 3 5 14 12 24 8 8 1 0 8
14- 3 10 25 11 15 19 20 16 4 11 11 2
15- 5 3 5 6 7 7 4 6 7 2 0 6
16- 3 2 3 2 1 16 7 2 5 1 1 Y
17- 0 3 7 2 1 1 5 1 2 0 1 0
18- o 0 2 6 2 5 2 1 1 0 1 1
19- 0 0 0 2 2 7 3 1 o 0 0 0
220 0 0 0 0 0 o 0 0 0 0 0 0
Tot. 40 41 65 70 101 166 239 232 226 158 106 76
% 22 23 36 3.9 57 9.3 134 13.0 12.6 88 59 4.3
(Continued)
A2
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Table A1 (Concluded)
T, 8, (deg azimuth) Total
(sec) 212- | 214 | 216- | 218 | 220- | 222- | 224- | 226- | 228- | »230 No. | %
<8 11 5 3 1 2 2 1 0 1 10 256 14.3
8- 4 3 5 0 0 1 1 0 0 3 219 12;3
9 5 3 4 2 0 1 3 0 0 7 201 11.3
10- 3 4 2 3 1 3 4 0 1 4 204 11.4
11- 2 0 4 2 0 3 1 1 1 19 223 12.5
12- 4 4 1 1 2 4 1 1 2 14 187 10.5
13- 0 3 6 0 1 0 2 0 0 11 116 6.5
14- 0 4 1 0 4 2 6 1 0 22 187 10.4
15- 2 0 1 ) 1 0 1 0 1 6 70 3.9
16- 1 0 1 0 1 1 0 1 ) 9 57 32
17- 5 1 0 0 0 0 0 0 0 2 31 1.7
18- 0 0 0 0 0 0 0 0 0 0 21 1.2
19- 0 0 0 0 0 0 0 0 0 0 15 0.8
220 0 0 0 0 0 0 0 0 0 0 0 0
Tot. 37 27 28 12 17 20 4 6 107 || 1787
% 21 15 1.6 0.5 07 1.0 1.1 0.2 0.3 6.0 100.0
Appendix A Field Data Summary A3




YEAR

1993
1994
1995
1996

1993
1994
1995
1996

1993
1994
1995
1996

A4

JAN

331
701
137
716

NDBC 51026, N. MOLOKAI

(21.37N 156.96W)

NUMBER OF RECORDS WITH HMO BY MONTH FOR 1993 - 1996

FEB

574
591
646
680

MAR

681
697
727

(o]

APR

485
712
701

0

MAY

0
172
733

0

JUN

151
0
707
0

. JUL

700
0
728
0

NUMBER OF RECORDS WITH HMO AND Tp BY

JAN

331
701
137
716

NUMBER OF RECORDS WITH HMO, Tp, AND Dp BY MONTH FOR

JAN

331
701
137
716

FEB

574
591
646
680

FEB

574
591
646
680

681
697
727

681
697
727

0

APR

485
712
701

0

485
712
701

0

172
733
0

JUN

151
0
707
0

151

707
0

JUL

700
0
728
0

700

728
o]

AUG

686
0
727
0

SEP

677
325
709

0

MONTH FOR 1993 -

AUG

686

727
0

AUG

686

727
0

SEP

677
325
709

0

SEP

677
325
709

0

oCcT NoOV
708 700
727 701
729 703
0 0
1996
OCT NOV
708 700
727 701
729 703
0 0
1993 - 1996
oCT NOV
708 700
727 701
729 703
0 0

DEC

701
486
715

DEC

701
486
715

DEC

701
486
715

0

TOTAL

6394
5112
7962
1396

TOTAL

6394
5112
7962
1396

TOTAL

6394
5112
7962
1396
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MEAN HmO (METRES) BY MONTH AND YEAR
NDBC BUOY 51026 (21.37 N, 156.96 W)

MONTH

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

YEAR MEAN
1993 2.0 2.9 2.6 2.7 . 1.7 1.9 2.0 1.4 2.1 2.8 3.2 2.3
1994 2.9 2.4 2.9 2.5 2.1 . . 1.6 2.0 2.8 3.1 2.5
1995 2.3 2.2 2.3 2.4 1.8 1.6 1.8 1.9 1.7 2.0 2.3 2.5 2.0
1996 2.4 3.4 . . . - . . . . 2.9

LARGEST Hm0 (METRES) BY MONTH AND YEAR
NDBC BUOY 51026 (21.37 N, 156.96 W)

MONTH

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

YEAR
1993 3.5 6.8 5.0 4.4 . 2.3 4.0 4.7 2.6 3.9 4.8 5.0
1994 5.6 4.6 6.0 4.5 2.6 . ) . 2.4 3.7 4.8 5.0
1995 4.5 5.5 4.6 4.8 3.4 2.5 2.9 2.8 3.9 3.4 7.3 5.0
1996 5.0 5.9 '

4 YR. STATISTICS FOR NDBC BUOY 51026 (21.37 N, 156.96 W)
THE MEAN SfGNIFICANT WAVE HEIGHT (METRES)= 2.3
THE MEAN PEAK WAVE PERIOD (SECONDS)= 10.7
THE MOST FREQUENT 22.5(CENTER) DIRECTION BAND (DEGREES) = 90.0
THE STANDARD DEVIATION OF HmO (METRES)= 0.8
THE STANDARD DEVIATION OF TP (SECONDS)= 2.9
THE LARGEST HmO (METRES)= 7.3
THE TP (SECONDS)ASSOC. WITH THE LARGEST Hm0= 16.7
THE PEAK DIRECTION (DEGREES) ASSOC. WITH THE LARGEST Hm0= 344.0
THE DATE OF LARGEST Hm0 OCCURRENCE IS 95114350
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BUOY STATION 51026 21.37 N, 156.96 W AZIMUTH (DEGREES) = 0.0
PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION
HEIGHT (METRES) PEAK. PERIOD (SECONDS) TOTAL

<6.9 6.9- 8.1~ 8.8- 9.6- 10.6~ 11.8- 13.4- 15.4- 18.2-
8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER

0.0-0.9 . 14 23 28 4 14 . . . . 83
1.0-1.8 4 43 186 493 1064 929 464 110 14 4 3311
2.0-2.9 9 28 86 153 301 867 1020 220 71 9 2764
3.0-3.9 . 9 23 105 162 522 412 119 . 1352
4.0-4.9 . . . 9 4 86 115 81 4 299
5.0-5.9 . 28 9 37
6.0-6.9 . . 9 4 13
7.0-7.9 . 0
8.0-8.9 . . . 0
9.0-9.9 0
10.0+ . . . . . . . . . . 0
TOTAL 13 85 304 697 1483 1976 2092 857 322 30
MEAN HmO(M) = 2.3 LARGEST HmO(M)= 6.3 MEAN TP(SEC)= 11.5 NO. OF CASES= 1645.
BUOY STATION 51026 21.37 N, 156.96 W  AZIMUTH(DEGREES) = 22.5

PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION
HEIGHT (METRES) PEAK PERIOD (SECONDS) TOTAL

<6.9 6.9- 8.1~ 8.8~ 9.6~ 10.6- 11.8- 13.4~ 15.4- 18.2~-

8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER

0.0-0.9 . 23 38 14 38 . . . . . 113
1.0-1.9 4 76 268 680 824 311 67 . . . 2230
2.0-2.9 19 138 167 186 258 532 560 76 14 . 1950
3.0-3.9 4 9 43 206 162 110 158 158 23 . 873
4.0-4.9 . . . 28 . . 33 67 . 128
5.0-5.9 . 19 14 33
6.0-6.9 . 0
7.0-7.9 . . 0
8.0-8.9 . . 0
9.0-9.9 0
10.0+ . . . . . . . . . . 0
TOTAL 27 246 516 1086 1310 953 785 267 123 14
MEAN HmO(M) = 2.2 LARGEST HmO(M)= 5.8 MEAN TP(SEC)= 10.5 NO. OF CASES= 1115.
A6
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BUOY STATION 51026 21.37 N, 156.96 W AZIMUTH (DEGREES) = 45.0
PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION
HEIGHT (METRES) » PEAK PERIOD (SECONDS) TOTAL

<6.9 6.9- 8.1- 8.8- 9.6- 10.6—- 11.8- 13.4- 15.4~ 18.2-
8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER

0.0-0.9 . 38 86 100 23 . . . . . 247
1.0-1.9 95 690 666 949 642 - 162 9 ] 9 . 3231
2.0-2.9 67 474 517 661 522 340 67 71 14 . 2733
3.0-3.9 4 71 148 268 258 19 4 . . . 772
4.0-4.9 4 . 23 19 38 4 23 . . 111
5.0-5.9 . . 9 23 . . . . 32
6.0-6.9 . . . . . . . . . . 0
7.0-7.9 . . . . . . . 0
8.0-8.9 . . . . . . . . . 0
9.0-9.9 . . . . . . . . . . 0
10.0 . . . . . . . . . . 0
TOTAL 166 1277 1417 2001 1473 582 84 103 23 0

MEAN HmO (M) = 2.1 LARGEST HmO(M)= 5.2 MEAN TP(SEC)= 9.1 NO. OF CASES= 1491.

BUOY STATION 51026 21.37 N, 156.96 W AZIMUTH (DEGREES) = 67.5
PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION
HEIGHT (METRES) PEAK PERIOD (SECONDS) TOTAL

<6.9 6.9- 8.1- 8.8- 9.6- 10.6- 11.8- 13.4- 15.4- 18.2-
8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER

0.0-0.9 23 76 71 33 . . . . . . 203
1.0-1.9 1318 3168 2367 1433 450 210 4 . . . 8950
2.0-2.9 416 1787 2276 1974 637 100 33 4 . . 7227
3.0-3.9 . 134 273 632 508 67 23 9 . . 1646
4.0-4.9 . ’ 14 105 287 292 33 19 . . 750
5.0-5.9 . . . 4 33 76 . . . . 113
6.0-6.9 . . . . . . 0
7.0-7.9 . . . . . . 0
8.0-8.9 . . . . . . 0
9.0-5.9 . . . . . . . . . . 0
10.0+. . . . . . . . . . . 0
TOTAL 1757 5165 5001 4181 1915 745 93 32 0 0

MEAN HmO(M) = 2.2 LARGEST HmO0 (M)= 6.0 MEAN TP(SEC)= 8.4 NO. OF CASES= 3945.
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BUOY STATION 51026 21.37 N, 156.96 W

AZIMUTH (DEGREES) = 90.0

PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION

HEIGHT (METRES)

<6.9
0.0-0.9 81
1.0-1.9 1615
2.0-2.9 493
3.0-3.9 4
4.0-4.9 .
§.0-5.9 .
6.0-6.9 .
7.0-7.9 .
8.0-8.9 .
9.0-9.9 .
10.0+ .
TOTAL 2193
MEAN HmQ (M) = 2.2

BUOY STATION 51026 21.37 N,

HEIGHT (METRES)

<6.9
0.0-0.9 .
1.0-1.9 47
2.0-2.9 .
3.0-3.9 .
4.0-4.9 .
5.0-5.9
6.0-6.9 .
7.0-7.9
8.0-8.9 .
9.0-9.9 .
10.0+ .
TOTAL 47
MEAN HmO(M) = 2.0
A8

6.9- 8.1- 8.8-

PEAK PERIOD (SECONDS)

9.6— 10.6- 11.8- 13.4- 15.4- 18.2-

8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER

81 105 28
3091 3589 2175
1615 2324 3311

81 263 661

. 4 14

4868 6285 6189

LARGEST HmO (M)=

6.9- 8.1- 8.8-

. 4 .
282 402 206
1926 287 9

1231 579 38
244 369 19

3683 1641 272

4.9 MEAN TP (SEC)=

TOTAL
. . . 299
4 . . -~ 11364
9 28 . 10002
91 47 . 2995
28 . . 678
. . . 0
. . . Y
. . . 0
. . 0
. . 0
. . . 0
132 75 0

8.7 NO. OF CASES= 5291.

156.96 W AZIMUTH (DEGREES) =112.5
PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION

PEAK PERIOD (SECONDS)

TOTAL

9.6- 10.6- 11.8- 13.4- 15.4~ 18.2-

8.0 8.7 9.5 10.5 11.7 13.3

47 27 100

LARGEST HmO (M) =

. 4 .
4 4 43
62 19

75 27 43

3.6 MEAN TP (SEC)=

15.3 18.1 LONGER

- . . 187
. . . 166

- . -

.
OO OO 00O

0 0 0

9.1 NO. OF CASES= 78.
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BUOY STATION 51026 21.37 N, 156.96 W AZIMUTH (DEGREES) =135.0
PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION
HEIGHT (METRES) PEAK PERIOD (SECONDS)

<6.9 6.9- 8.1- 8.8~ 9.6- 10.6- 11.8~ 13.4- 15.4- 18.2-
8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER

0.0-0.9 . . . . . . . . . ]
1.0-1.9 . . . . . . . . . .
2.0-2.9 . . . . . . . . . 4
3.0-3.9 . . . . . . . . . 4
4.0-4.9 . . . . . . . .
5.0-5.9 . . . . . . . . .
6.0-6.9 . ] . . . .
7.0-7.9 . . . . . . . . . .
8.0-8.9 . . . . . ; . . . .
9.0~9.9 . . . . . . . ]
10.0+ . ] . . . . . ] . .
TOTAL 0 0 0 0 0 0 0 0 0
MEAN HmO(M) = 3.1 LARGEST HmO(M)= 3.5 MEAN TP(SEC)= 22.5 NO. OF CASES=
BUOY STATION 51026 21.37 N, 156.96 W  AZIMUTH(DEGREES) =157.5
PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION
HEIGHT (METRES) PEAK PERIOD (SECONDS)
<6.9 6.9- 8.1- 8.8~ 9.6~ 10.6- 11.8~ 13.4- 15.4- 18.2-
8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER
0.0-0.9 . . . . . .
1.0-1.9 . . . . . . . )
2.0-2.9 . . . . . . .
3.0-3.9 . . . . . .
4.0-4.9 ] . . . ] . .
5.0-5.9 . . . . . .
6.0~6.9 . ) . . . . . . . ]
7.0-7.9 . . . . . . .
8.0-8.9 . . . . . . .
9.0-9.9 . . . . . ]
10.0+ . ; . ) . . . ) ; .
TOTAL 0 0 0 0 0 0 0 0 0 0
MEAN HmO (M) = 0.0 LARGEST HmO(M)= 0.0 MEAN TP(SEC)= 0.0 NO. OF CASES=
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BUOY STATION 51026 21.37 N, 156.96 W  AZIMUTH(DEGREES) =180.0
PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION
HEIGHT (METRES) PEAK PERIOD (SECONDS) TOTAL

<6.9 6.9- 8.1~ 8.8~ 9.6- 10.6- 11.8- 13.4- 15.4- 18.2-
8.0 8.7 8.5 10.5 11.7 13.3 15.3 18.1 LONGER

0.0-0.9 . . . . . . . . . 0
1.0-1.9 . . . . . . . . . . 0
2.0-2.9 . . . . . . . . . 0
3.0-3.9 . . . . . . . . . . 0
4.0-4.9 . . . . . . . . . . 0
5.0-5.9 . . . . . . . 0
6.0-6.9 . . . . . . . . . 0
7.0-7.9 . . . . . . . . . 0
8.0-8.9 . . . . . . . . 0
9.0-9.9 . . . . . . . . . 0
10.0+ . . . . . . . . . . 0
TOTAL 0 0 0 0 0 0 0 0 0 0

MEAN HmO (M) = 0.0 LARGEST HmO(M)= 0.0 MEAN TP(SEC)= 0.0 NO. OF CASES= 0.

BUOY STATION 51026 21.37 N, 156.96 W AZIMUTH (DEGREES) =202.5
PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION
HEIGHT (METRES) PEAK PERIOD (SECONDS) TOTAL

<6.9 6.9- 8.1- 8.8- 9.6~ 10.6— 11.8- 13.4- 15.4- 18.2-
8.0 8.7 $.5 10.5 11.7 13.3 15.3 18.1 LONGER

0.0-0.9 . . . . . . . . . 0
1.0-1.9 . . . . . . . . . 0
2.0-2.9 . . . . . . . . . . 0
3.0-3.9 . . . . . . . . 0
4.0~-4.9 . . . . . . . . . 0
5.0-5.9 . . . . . . . . 0
6.0-6.9 . . . . . . . 0
7.0-7.9 . . . . . . . . 0
8.0-8.9 . . . . . . . . . . 0
9.0-9.9 . . . . . . 0
10.0+ . . . . . . . . . 0
TOTAL 0 0 0 0 0 0 0 0 0

MEAN HmO(M) = 0.0 LARGEST HmO (M)= 0.0 MEAN TP(SEC)= 0.0 NO. OF CASES= 0.
A10
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BUOY STATION 51026 21.37 N, 156.96 W AZIMUTH (DEGREES) =225.0
PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION
HEIGHT (METRES) PEAK PERIOD (SECONDS) TOTAL

<6.9 6.9- 8.1- 8.8- 9.6- 10.6- 11.8- 13.4- 15.4- 18.2-
8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER

0.0-0.9 . . . . - . . . - 0
1.0-1.9 B 4 . 4 . . . . . 4 12
2.0-2.9 . . . . . . . . . . 0
3.0-3.9 . . . . . . . . . 0
4.0-4.9 . . . . . . . . . 0
5.0-5.9 . - . . . . 0
6.0-6.9 . . . - . . 0
7.0-7.9 . . . . . . . 0
8.0-8.9 . . . . . - - . 0
9.0-9.9 . . . . . - . . . 0
10.0+ . . . . .o . . . . . 0
TOTAL 0 4 0 4 0 0 0 0 0 4
MEAN HmO(M) = 1.4 LARGEST HmO (M)= 1.7 MEAN TP(SEC)= 12.1 NO. OF CASES= 3.
BUOY STATION 51026 21.37 N, 156.96 W AZIMUTH (DEGREES) =247.5

PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERICD BY DIRECTION
HEIGHT (METRES) PERK PERIOD (SECONDS) TOTAL

<6.9 6.9- 8.1- 8.8- 9.6~ 10.6- 11.8- 13.4~ 15,4~ 18.2-

8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER

0.0-0.9 . . . - . . . 0
1.0-1.9% . 14 4 4 . . . 4 . 26
2.0-2.9 . . . . . . . . 0
3.0-3.9 . . . - . . . 0
4.0-4.9 . . . . . . . . 0
5.0-5.9 . . . . . . . - 0
6.0-6.9 . . - - . . . 0
7.0-7.9 . . . . . . . . 0
8.0-8.9 . . . . - - . . 0
9.0-9.9 . . . - - - . . 0
10.0+ . . . . . N N . . . 0
TOTAL 0 14 4 4 0 0 0 0 4 0
MEAN HmO(M) = 1.3 LARGEST HmO (M)= 1.9 MEAN TP(SEC)= 8.4 NO. OF CASES= 6.
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BUOY STATION 51026 21.37 N, 156.96 W  AZIMUTH(DEGREES) =270.0
PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION
HEIGHT (METRES) PEAK PERIOD (SECONDS) TOTAL

<6.9 6.9- 8.1- 8.8- 9.6~ 10.6- 11.8~ 13.4- 15.4- 18.2-
8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER

0.0-0.9 . 4 . . 4 . . . 8
1.0-1.9 . . . 4 . 4 14 . . 4 26
2.0-2.9 . . . . . . . 4 . . 4
3.0-3.9 . . . . . . . . . . 0
4.0-4.9 . . . . . . . . . - 0
5.0-5.9 . . . . . . . . . 0
6.0-6.9 . . . . . . . . . . 0
7.0-7.9 . . . . . . . . . 0
8.0-8.9 . . . - . . . . 0
9.0-9.8 . . . . . . . . . . 0
10.0+ . . . . . . . . . 0
TOTAL 0 0 4 4 0 4 18 4 0 4
MEAN HmO(M) = 1.4 LARGEST HmO(M)= 2.9 MEAN TP(SEC)= 12.5 NO. OF CASES= 9.

BUOY STATION 51026 21.37 N, 156.96 W  AZIMUTH(DEGREES) =292.5

PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERICD BY DIRECTION

HEIGHT (METRES) PERK PERIOD (SECONDS) TOTAL

<6.9 6.%9- 8.1~ 8.8- 9.6- 10.6- 11.8~ 13.4- 15.4- 18.2-
8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER

0.0-0.9 . . . : 9 9 9 9 . . 36
1.0-1.9 . . . . 38 86 282 225 86 38 755
2.0-2.9 . . . 13 91 138 273 254 76 851
3.0-3.9 . . . . 19 105 124 28 276
4.0-4.9 . . . . 62 9 71
5.0-5.9 . . . . . . . 0
6.0-6.9 . . . . . . . . . 0
7.0-7.9 . . . . . . . 0
8.0-8.9 . . . . . . . . . 0
9.0-9.9 . . . . . . . . . 0
10.0+ . . . . . . . . . 0
TOTAL 0 0 0 0 66 186 448 612 526 151

MEAN HmO(M) = 2.3 LARGEST HmO (M)= 4.9 MEAN TP(SEC)= 14.5 NO. OF CASES= 417.
A12
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BUOY STATION 51026 21.37 N, 156.96 W AZIMUTH (DEGREES) =315.0
PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION
HEIGHT (METRES) PEARK PERIOD (SECONDS)

<6.9 6.9- 8.1- 8.8- 9.6- 10.6- 11.8- 13.4~ 15.4- 18.2-
8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER

0.0-0.9 . . 4 . 28 38 14 . . .
1.0-1.9 . . 23 110 273 1073 1744 1068 349 86
2.0-2.9 23 9 14 38 100 388 1816 2664 1380 306
3.0-3.9 . . 9 9 28 76 325. 1289 1279 292
4.0-4.9 . . . . . . 57 215 532 23
5.0-5.9 . . . . . . . 9 43 .
6.0~6.9 . . . . . . . .
7.0-7.9 . . . . . . . . . . .
8.0-8.9 . . . . . . . . . .
9.0-9.9 . . . . . . . .
10.0+ . . . . . . . . . .
TOTAL 23 9 50 157 429 1575 3956 5245 3583 707
MEAN HmO(M) = 2.5 LARGEST HmO(M)= 5.5 MEAN TP(SEC)= 14.1 NO. OF CASES=
BUOY STATION 51026 21.37 N, 156.96 W  AZIMUTH(DEGREES) =337.5
PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD BY DIRECTION
HEIGHT (METRES) ] PEAK PERIOD (SECONDS)
<6.9 6.9- 8.1- 8.8~ 9.6- 10.6- 11.8- 13.4- 15.4- 18.2-
8.0 8.7 9.5 10.5 11.7 13.3 15.3 18.1 LONGER
0.0-0.9 . 14 . 4 43 9 4 . . .
1.0-1.9 . . 23 364 925 1878 1653 354 95 28
2.0-2.9 4 43 43 71 182 977 2856 2008 555 129
3.0-3.9 . 9 4 23 62 277 819 1759 642 95
4.0-4.9 . . . . . 28 158 369 349 9
5.0-5.9 . . . . . 4 28 28 81 4
6.0~6.9 . . . . . . . . 86 4
7.0-7.9 . . . . . . . . 9 .
8.0-8.9 . . . . . . . . . .
9.0-9.9 . . . . . . . . . .
10.0+. . . . . . . . . . .
TOTAL 4 66 70 462 1212 3173 5518 4518 1817 269
MEAN HmO(M) = 2.5 LARGEST HmO(M)= 7.3 MEAN TP(SEC)= 13.0 NO. OF CASES=
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MEAN HmO (M)=

Al4

<6.

105
3086
1035

14

4240

2.3

156.96 W

FOR ALL DIRECTIONS

PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD

6.9- 8.1- 8.8~
8.0 8.7 9.5 10.5 11.7

249 335 210
7117 7155 6259
4117 5435 6460

306 752 1826

4 19 143
. . 4

11793 13696 14802

LARGEST HmO (M)=

PEAK PERIOD (SECONDS)

9.6~ 10.6- 11.8- 13.4- 15.4- 18.2-

148 81
4505 5066
4011 3604
2367 1294

589 733

43 105

-
- -

13.3 15.3

33 9
4490 1773
6504 5334
1912 3824
359 805

28 38

11663 10883 13326 11783

7.3 MEAN TP (SEC)= 10.7

TOTAL

18.1 LONGER
. 1170
560 167 40178
2319 527 © 39346
2238 421 14954
1092 47 3791
172 28 418
95 9 104
9 . 9
. 0
0
0

6485 1199

TOTAL CASES= 20864.
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B2

Table B1

Mean A,,, ., Nov 93-Sep 94, Pier 2 (Only Cases with 8 or More
Observations are Shown)

T, Qm_(d_eg_@ﬁg toward, referenced fo true north)
(sec) <195 195-205 205-215 215-225 225-235 235-245
<8 0.07 0.08 0.09
8-9 0.07 0.07 0.07
9-10 0.12 0.10 0.10
10-11 0.10 0.09 0.09 0.08 0.10
11-12 0.09 0.09 0.09 0.10
12-13 0.09 0.08 0.08 0.10 0.10
13-14 0.09 0.08 0.08 0.08
14-15 0.09 0.07 0.07 0.08
15-16 0.07 0.07 0.07
16-17 0.14 0.11 0.12
17-18 0.1 0.10
18-19 0.09
19-20 0.09
20-21
>21
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Table B2
Mean A,,, ., Nov 93-Sep 94, Canoe Club (Only Cases with 8 or
More Observations are Shown)
T, g, (deg going toward, referenced to true north)
(sec) <195 195-205 205-215 215-225 225-235 235-245
<8 0.23 0.23 0.24
8-9 0.23 0.22 0.23
9-10 0.30 0.26 0.28
10-11 0.30 0.26 0.28 0.26 0.30
11-12 0.31 0.27 0.29 0.31
12-13 0.30 0.25 0.26 - 0.28 0.31
13-14 0.31 0.24 0.25 0.30
14-15 0.31 0.25 0.25 0.27
15-16 0.24° 0.24 0.25
16-17 0.32 0.26 0.25
17-18 0.31 0.26
18-19 0.30
19-20 0.30
20-21
>21
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Table B3

Mean A,,, ., Nov 93-Sep 94, Back Basin (Only Cases with 8 or
More Observations are Shown)

T, 6, (deg going toward, referenced to true north)
(sec) <195 195-205 205-215 215-225 225-235 235-245
<8 0.26 0.25 0.25

8-9 0.24 0.23 0.25

9-10 0.33 0.28 0.27
10-11 0.32 0.28 0.28 0.28 0.31
11-12 0.35 0.29 0.31 0.33
12-13 0.33 0.27 0.26 0.31 0.33
1314 | 034 0.26 0.26 0.33
14-15 0.33 0.25 0.24 0.27
15-16 0.25 0.24 0.25
16-17 0.35 0.26 0.26
17-18 0.32 0.29
18-19 0.29
19-20 0.30
20-21

>21
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Table B4
Mean A,,, ., Nov 93-Sep 94, Channel Entrance (Only Cases with
8 or More Observations are Shown)

T, 8, (deg going toward, referenced to true north)
(sec) <195 195-205 205-215 215-225 225-235 235-245
<8 0.68 0.76 0.78

8-9 0.66 0.71 0.65

9-10 0.66 0.69 0.73
10-11 0.62 0.67 0.74 0.74 0.69
11-12 0.57 0.65 0.69 0.68
1213 0.59 0.63 0.71 0.69 0.73
13-14 0.62 0.64 0.66 0.62
14-15 0.66 0.68 0.72 071
15-16 0.67 0.72 0.67
16-17 0.66 0.66 0.69
17-18 0.61 0.66
18-19 0.62
19-20 0.67
20-21

>21
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Table B5

Standard Deviation of A,,,, . Nov 93-Sep 94, Pier 2 (Only Cases
with 8 or More Observations are Shown)

T, 6, (deg going toward, referenced to true north)

(sec) <195 195205 | 205215 | 215225 | 225205 | 235245
<8 0.01 0.01 0.01

89 0.01 | 001 0.00

9-10 0.01 0.02 0.01

10-11 0.02 0.01 0.02 0.01 0.01
1112 0.01 0.01 1 0.01 0.01

12-13 0.01 0.01 0.01 0.01 0.01

13-14 0.01 0.01 | 0.01 0.01

14-15 0.00 0.01 | 0.01 0.01

15-16 0.01 0.01 0.01

1617 0.02 0.02 | 0.02

17-18 0.02 0.01

1819 0.01

19-20 0.01

20-21

>21
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Table B6
Standard Deviation of A,,,, ., Nov 93-Sep 94, Canoe Club (Only
Cases with 8 or More Observations are Shown)
T, 8, (deg going toward, referenced to true north)
(se0) <195 195-205 205-215 215-225 225-235 235-245
<8 0.02 0.02 . 0.02
8-9 0.02 0.02 0.02
9-10 0.02 0.03 0.04
10-11 0.04 0.03 0.05 0.02 0.02
11-12 0.04 0.04 0.05 0.04
12-13 0.04 0.03 0.04 0.05 0.05
13-14 0.05 0.03 0.03 0.06
14-15 0.04 0.02 0.02 0.04
15-16 0.02 0.02 0.02
16-17 0.03 ' 0.04 0.04
17-18 0.04 0.01
18-19 0.05
19-20 0.04
20-21
>21
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Table B7
Standard Deviation of A4,,, ., Nov 93-Sep 94, Back Basin (Only
Cases with 8 or More Observations are Shown)
T, 8, (deg going toward, referenced to true north)
(sec) <195 195-205 205-215 215-225 225-235 235-245
<8 0.03 0.08 0.02
8-9 0.02 0.02 0.03
910 0.03 0.03 0.04
10-11 0.04 0.04 0.05 0.04 0.04
11-12 0.04 0.04 0.05 0.03
1213 0.03 0.04 0.04 0.05 0.04
13-14 0.04 0.03 0.04 0.06
14-15 0.02 0.03 0.03 0.04
15-16 0.03 0.02 0.02
16-17 0.03 0.04 0.06
17-18 0.03 0.01
18-19 0.03
19-20 0.02
20-21
>21
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Table B8
Standard Deviation of A,,,,, Nov 93-Sep 94, Channel Entrance
(Only Cases with 8 or More Observations are Shown)
T, 8, (deg going toward, referenced to true north)
(sec) <195 195-205 205215 | 215-225 | 225235 | 235-245
<8 0.06 0.07 0.05
8-9 0.05 0.05 0.06
9-10 0.08 0.06 0.07
10-11 0.06 0.08 0.06 0.04 0.05
11-12 0.07 0.08 0.06 0.10
12-13 0.04 0.07 0.05 0.09 0.08
13-14 0.07 0.05 0.07 0.05
14-15 0.08 0.05 0.05 0.05
15-16 0.05 0.04 0.03
16-17 0.08 0.03 0.01
17-18 0.05 0.02
18-19 0.03
19-20 0.05
20-21
>21
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Figure D1. Wave height time series plot for November 1994
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Figure D2. Wave period time series plot for November 1994
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Figure D3. Wave direction time series plot for November 1994
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Appendix E
Basin Locations
for Alternative Plans

Appendix E Basin Locations for Altemnative Plans

E1




E2

Figure E1. Basin locations, Plan 1

Figure E2. Basin locations, Plan 2
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Figure E3. Basin locations, Plan 3a

Figure E4. Basin locations, Plan 3b
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E4

Figure ES5. Basin locations, Plan 3¢

Figure E6. Basin locations, Plan 4a
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Figure E7. Basin locations, Plans 4b and 6

Figure E8. Basin locations, Plan 4c
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Figure E9. Basin locations, Plan 5
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Figure E10. Basin locations, Plan 7
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Appendix F

Wind Wave and Swell
Summaries from Numerical
Model
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Table F6
| A, s Values Weighted by Wind Wave and Swell Climate
Plan
Basin Remarks
Existing 1 2 3a 3b 3¢ 4a 4b 4c 5
Pier 1
2 0.25 0.15 025 [ 017 | 015 | 015 | 0.18 | 017 | 017 | 0.20
3 0.16 0.09 0.177 | 0.14 { 0.12 | 0.11 0.19 | 0.14 | 0.11 | 0.15
4 0.13 0.06 0.13 | 008 | 0.06 | 0.07 | 0.14 | 0.08 | 0.07 | 0.10
5 0.12 0.04 0.14 | 007 | 0.05 | 0.06 | 0.11 0.05 | 0.05 | 0.09
6 0.08 0.04 0.10 { 005 | 0.07 | 0.04 | 007 | 0.05 | 0.05 | 0.07
Piers2&3
7 0.09 0.06 0.09 | 008 | 009 | 007 | 008 | 0.07 | 0.07 | 0.08
8 0.08 0.08 0.09 1009 {009 {008 |010 | 009 | 0.09 | 0.08 | Pier2gage
9 0.12 0.09 0.1 012 | 0.11 | 0.1 0.12 | 0.11 0.11 | 0.10
10 0.18 0.14 017 | 016 | 017 | 0.16 | 017 | 017 | 0.17 | 0.19
Barge Pier (Planned)
25 0.14 Concept C
26 0.14 Concept C
30 0.12 | 012 | 0.12 | 0.11 012 | 012 { 0.11 | 0.12 | Concept 12
Boat Ramp
21 0.21 0.19 0.19 | 0.16 | 0.11 | 0.06 | O.11 0.08 | 0.04 | 0.20 | Adjusted for B=0.032
Passenger Ship Pier (Planned)
17 035 | 0.15 | 0.07 Adjacent to existing fill
18 0.30 | 0.17 | 0.06 “ ” “ "
23 0.12 0.14 Slip in existing fill
28 0.14 | 0.10 | 0.04 Notch in existing fill
29 0.14 | 0.11 | 0.08 “«@ m "
32 0.11 | New fill in SW harbor area
33 0.17 « = oa » « o
Other Harbor Areas
1 0.83 0.81 084 | 085 | 084 | 084 | 083 | 083 | 084 | 0.84
11 0.22 0.17 022 {019 | 019 | 0.18 [ 024 | 0.19 | 0.18 | 0.20
12 0.46 0.42 046 | 046 | 047 | 046 | 046 | 047 | 046 | 0.44
13 0.27 0.23 026 | 027 029 } 030 | 026 |0.28 {030 | 029
14 0.21 0.17 020 | 021 | 023 | 0.24 | 0.21 028 | 0.24 | 0.23 | Back Basin gage
(Continued)
F12

Appendix F Wind Wave and Swell Summaries from Numerical Model



Table F6 (Concluded)
Plan
Basin Remarks
Existing 1 2 3a 3b 3¢ 4a 4b 4c 5
Other Harbor Areas (concluded)
15 0.49 0.53 0.58 | 0.55 0.31 0.13 | 055 | 0.32 | 0.16 | 0.54
16 0.60 0.52 054 | 056 | 0.17 [ 0.03 | 053 | 0.16 | 0.05 | 0.63 | Channel Entrance gage
17 0.50 0.34 037 | 040 | 0.16 | 0.05 0.52
18 0.70 0.46 0.53 | 0.38 | 0.17 | 0.05 0.72
19 0.71 0.64 085 | 064 | 041 | 025 | 085 | 053 | 0.34 | 0.69
20 0.40 0.36 042 1046 ) 039 | 033 | 048 | 039 | 034 | 041
22 0.07 0.08
24 0.22 0.25
25 0.20
26 0.25
27 0.18 | 0.11 | 0.05
30 0.21 Canoe Club gage (approx)
31 0.28 01t | 014 1012 | 009 | 0.10 | 0.10 | 0.10 | O.10
32 0.75
33 047
34 0.42 0.30
35 1.09 1.06 1.09 1.08 1.08 | 1.08 1.08 1.08 1.08 1.08 | Amay gage
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Table F7
H_Values Exceeded 10 Percent and 1 Percent of the Time at Piers
H, Values Exceeded 10% and 1% of Time (ft)

Basin Existing Plan 1 Plan 2 Plan 3a

Number 10% 1% 10% 1% 10% 1% 10% 1%

Pier 1

2 1.19 1.71 1.18 1.68 1.19 1.70 0.87 1.33

3 0.79 1.12 0.82 1.16 0.83 1.18 0.68 0.96

4 0.60 0.85 0.58 0.83 0.59 0.83 0.39 0.63

5 0.59 0.85 0.66 0.98 0.67 0.98 0.33 0.48

6 0.37 0.51 047 0.67 0.47 0.66 0.25 0.39

Piers2 &3

7 0.44 0.63 043 0.62 0.42 0.61 0.40 0.58

8 0.42 0.63 0.46 0.69 0.46 0.68 0.47 0.73

9 0.58 0.84 0.56 0.84 0.56 0.81 0.61 0.95

10 0.94 1.43 0.87 1.31 0.85 1.26 0.83 1.21

Barge Pier (Planned) '

25 0.91 1.29

26 0.76 1.13

30 0.57 0.80 0.57 0.84

Boat Ramp

21 1.04 1.52 1.06 1.50 1.04 1.47 0.71 1.04

Passenger Ship Pier (Planned)

23 0.63 0.89 0.63 0.89

28 0.69 1.04
0.65 0.96

(Sheet 1 of 3)
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Table F7 (Continued)

H, Values Exceeded 10% and 1% of Time (ft)
Basin Plan 3b Plan 3¢ Plan 4a Plan 4b
Number

10% 1% 10% 1% 10% 1% 10% 1%
Pier 1
2 0.79 1.20 0.78 117 0.95 146 0.86 1.33
3 0.57 0.88 0.53 0.80 0.85 124 0.66 0.93
4 0.33 0.51 0.34 0.53 0.64 0.93 0.41 0.63
5 0.26 0.36 0.27 0.39 0.49 0.71 0.26 0.39
6 0.34 0.52 0.21 0.32 0.33 0.47 0.22 0.33
Piers2 & 3
7 0.43 0.66 0.35 0.53 0.40 0.57 0.34 0.53
8 043 0.66 0.43 0.67 0.48 0.72 0.44 0.68
9 0.54 0.82 0.53 0.81 0.57 0.84 0.52 0.80
10 0.87 1.30 -1 0.84 1.26 0.88 1.29 0.88 1.37
Barge Pier (Planned)
25
26
30 0.61 0.90 0.55 . 0.83 0.55 0.82 0.62 0.92
Boat Ramp
21 0.49 0.72 0.49 0.69 0.56 0.84 0.24 0.37
Passenger Ship Pier (Planned)
17 1.71 2.55 0.80 127
18 1.49 2.22 0.93 1.48
28 0.53 0.85 0.19 0.31
29 0.55 0.82 0.41 0.62

(Sheet 2 of 3)

Appendix F Wind Wave and Swell Summaries from Numerical Model

F15




Table F7 (Concluded)

H, Values Exceeded 10% and 1% of Time (ft)
Basin Plan 4c Plan 5 Plan 6 Plan7
Number 10% 1% 10% 1% 10% 1% 10% 1%
Pier 1
2 0.83 1.25 0.96 140 0.83 1.27 0.90 141
3 0.56 0.85 0.74 1.06 0.65 0.93 0.59 0.92
4 0.34 0.54 0.46 0.71 0.39 0.58 0.33 0.51
5 0.24 0.37 0.40 0.57 0.25 0.36 0.28 043
6 0.23 0.33 0.34 0.48 0.22 0.32 0.20 0.30
Piers2 &3
7 0.35 0.53 0.40 0.57 0.34 0.54 0.37 0.56
8 0.46 0.70 0.43 0.65 0.45 0.69 0.45 0.72
9 0.53 0.82 0.51 0.77 0.51 0.80 0.50 0.78
10 0.87 1.32 0.95 1.39 0.87 1.30 0.94 14
Barge Pier (Planned)
30 0.58 0.86 0.58 0.88 0.60 0.88 0.62 0.98
Boat Ramp
21 0.21 0.31 122 1.81 0.29 0.45 0.37 0.58
Passenger Ship Pier (Planned)
17 0.33 0.47 0.78 123
18 0.29 0.45 0.88 1.39
32 0.55 0.82
33 0.84 125
36 1.06 1.54
37 1.22 1.76
38 146 2.12

(Sheet 3 of 3)
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Table Gt
RMS Values of A,,,,, at Piers, T=100-400 sec
Harbor Plan
Basin llEx. |1 2 3a 3b 3c 4a 4b 4c 5 6 7
No.
Pier 1
2 1.40 1.60 1.64 2.19 2.53 235 1.58 2.29 2.35 1.12 2.27 2.23
3 1.17 1.18 1.19 1.70 1.85 157 1.21 1.72 1.58 0.88 1.67 1.64
4 0.82 0.98 0.99 0.81 0.73 0.88 0.83 0.75 0.89 1.01 0.76 0.71
5 1.57 1.69 1.78 178 1.95 2.15 1.52 1.75 2.15 1.65 1.75 1.82
6 2.01 203 | 215 230 | 258 | 270 1.89 227 | 27 1.96 2.23 2.34
Piers2 &3
7 2.05 2.05 2.18 2.33 243 2.74 1.91 2.31 2.74 1.97 2.26 2.37
8 1.92 1.97 2.08 2.20 2.44 2.60 1.82 2.18 261 1.89 214 224
9 1.31 146 1.52 145 1.57 1.77 1.29 143 1.78 142 1.43 145
10 0.71 0.64 0.66 0.58 0.51 0.51 0.61 0.57 0.52 0.75 0.57 0.71
Barge Pier (Planned)
25 0.80
26 1.43
30 1.28 0.83 1.16 1.59 0.78 0.88 1.29 1.88 0.80 2.96
Boat Ramp
21 191 2.00 1.77 1.87 2.07 272 1.83 1.95 2.39 3.13 1.90 2.26
Passenger Ship Pier (Planned)
17 1.54 1.88 2.07 1.85 2.32
18 2.06 212 1.32 2.07 2.43
23 3.87 4.27
I 28 2.66 2.35 146
29 2.28 2.14 1.50
32 ’ _ 1.87
33 145
36 2.77
37 2.20
38 144
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Table G2
Percent Occurrence of H_,,,.>10 cm at Piers, T=100-400 sec

Harbor Plan
Basin || Ex. 1 2 3a 3b 3¢ 4a 4b 4c 5 6 7
No.

Pier 1
2 21 23 | 24 |56 |62 |55 |35 6.1 54 | 14 66 | 40
3 08 | 09 |09 |26 {25 1.3 | 09 25 14 | 05 24 | 09
4 12 | 22 22 12 | 07 | 08 1.1 07 | 07 | 30 09 | 01
5 72 9.5 9.6 80 | 63 | 84 | 76 67 |75 | 110 67 | 22
6 131 | 136 [ 143 | 146 [ 117 | 137 | 129 | 130 | 125 | 151 123 | 54
Piers2&3
7 136 | 138 | 146 | 149 | 100 [139 | 133 | 133 | 129 | 154 129 | 57
8 1.8 [ 124 | 134 | 129 | 100 {125 |11.7 | 114 | 11.7 | 144 108 | 4.9
9 46 | 6.6 68 | 48 | 33 | 49 | 52 4.1 45 | 78 42 1.1
10 o5 | 04 | 04 | 01 00 | 0.1 0.4 0.1 00 | 06 0.1 0.1
Barge Pier (Planned)
25 0.4
26 1.9
30 52 | 05 |06 26 | 08 0.9 13 | 49 08 | 44
Boat Ramp
21 106 | 126 | 111 | 141 | 124 [ 175 | 154 | 156 | 143 | 238 153 | 37
Passenger Ship Pier (Planned)

17 60 | 76 | 70 75 | 155
18 100 | 86 | 2.1 87 | 153
23 356 | 39.2
28 139 | 71 2.1
29 89 | 59 | 22
32 6.8
33 3.2
36 35
37 1.5
38 0.2
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Table G3
Percent Occurrence of H, ,,,.>10 cm at Piers, 7=30-100 sec
Harbor Plan
Basin |Ex. |1 2 3a 3b 3¢ 4a 4b 4c 5 6 7
No. .
Pier 1
2 14 | 27 | 26 | 09 | 21 22 {09 | 24 |18 | 22 22 | 53
3 34 | 3.1 20 | 5.1 22 | 38 | 54 | 36 | 41 4.1 35 | 115
4 30 | 22 | 27 18 | 26 | 28 14 | 37 | 30 | 41 32 | 92
5 10 |25 |10 [20 |03 |09 |05 |04 | 07 1.5 04 | 57
6 48 | 5.1 40 | 33 | 46 | 45 | 44 | 6.1 56 | 96 59 | 164
Piers2 &3
7 57 |63 |48 |46 [ 28 |55 |39 |66 |53 |62 63 | 162
8 40 | 64 |33 |23 |29 |43 |19 | 40 | 41 5.3 40 | 149
9 2.1 26 | 24 16 | 12 | 21 27 | 21 1.8 | 34 1.5 8.3
10 2.1 33 [40 | 23 | 44 |49 |40 |59 |56 | 53 51 | 128
Barge Pier (Planned)
25 4.1
26 27
30 4.0 14 | 27 |28 |19 | 21 16 | 33 22 | 68
Boat Ramp
21 106 (105 | 99 | 42 | 37 | 48 [ 37 | 40 | 46 | 134 45 | 113
Passenger Ship Pier (Planned)
20 | 08 | 07 0.4 1.9
3.1 26 | 30 1.9 | 45
24
0.7
6.8
34
11.5
35
1.2
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Table G4
Percent Occurrence of Cases Exceeding Wilson’s (1967) Slope Criterion at
Piers, T=100-400 sec
Harbor Plan
Basin lEx |1 2 3a 3b 3c 4a 4b 4c 5 6 7
No.
Pier 1
2 004 {004 | 004 078 | 037 |017 [008 {045 |025 | 000 | 054 |O0.17
3 000 | 000 {000 |008 [004 {000 | 000 |004 |000 |000 |O0.04 {000
4 000 [000 |000 [000 {000 |000 |0O0O |000 {000 |004 | 000 |0.00
5 008 | 017 | 047 | 004 |000 |012 |008 |000 |004 (029 | o000 |0.00
6 017 | 029 025 | 029 |033 |041 012 |008 |029 |033 |o0.12 |004
Piers2&3
7 017 | 029 025 037 [029 |041 [012 [008 |029 | 037 |o0.12 | o004
8 012 [021 (025 (025 0290 |033 |o012 |008 |025 | 029 |o0:12 |0.00
9 000 | 004 |004 |000 {000 |004 |000 [000 {000 |O0.17 |000 |O0.00
10 000 | 000 {000 {000 [000 |000 [000 | 000 |000 {000 {000 |000
Barge Pier (Planned)
25 0.00
26 0.04
30 004 | 000 |000 |004 {000 |000 {000 |008 | o000 |O000
Boat Ramp
21 000 | 008 |004 |050 |012 |091 |054 |058 |017 | 420 |o058 |0.00
Passenger Ship Pier (Planned)
17 021 | 017 | 0.04 025 | 0.99
18 025 | 021 | 0.00 021 | 0.82
23 280 | 437
28 0.87 | 025 | 0.00
29 029 |o0.12 |[000
32 0.12
33 0.00
36 0.00
a7 0.00
38 0.00
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Table G5 :
Percent Occurrence of Cases Exceeding Wilson’s (1967) Slope Criterion at
Piers, T=30-100 sec
Harbor Plan
Basin flEx |1 2 3a 3b 3c 4a 4b 4c 5 6 |7
No.
Pier 1
2 02 (17 |10 03 |05 |04 |05 |05 |05 | 11 05 | 14
3 15 | 34 [ 12 |52 |10 [25 |39 |22 |67 | 385 18 | 117
4 08 |07 | 14 19 | 04 | 21 09 |09 | 04 | 14 06 | 63
5 17 | 68 {34 |99 [12 [12 |10 |02 |13 | 44 05 | 96
6 50 [ 75 [ 39 |52 |o6 [20 |28 |14 | 19 | 154 26 | 127
Piers2 &3
7 33 | 85 |27 |37 |04 |25 |26 |17 | 11 24 2.1 9.1
8 54 [150 [ 53 [ 35 |04 |29 |17 |09 |22 | 69 14 | 161
9 21 |35 |23 |12 |09 |38 |24 |16 |12 | 62 16 | 125
10 10 |09 |28 |24 |25 |35 |46 | 42 | 51 3.1 33 | 63
Barge Pier (Planned)
25 34
26 23
30 25 09 (12 |29 |67 |49 |12 | 42 47 | 54
Boat Ramp
21 59 |53 |39 (07 [09 o8 |13 |12 |19 | 77 16 | 52
Passenger Ship Pier (Planned)
17 2.1 24 | 16 13 | 25
18 1.1 07 | 086 07 | 1.8
23 08 | 10
28 35 |07 | 13
29 65 | 1.4 | 09
32 8.9
33 52
36 9.8
37 27
38 0.3
G18
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Appendix |
Notation

a Wave amplitude, m (ft)

a.

Incident wave amplitude, m (ft)
A,  Wave amplification factor

(A ). Effective, or spectral, wave amplification factor

A Wave amplification factor for long (infragravity) waves

amp,l
A,.ps Wave amplification factor for wind waves and swell

c Wave phase speed, m/sec (ft/sec)

c, Wave group speed, m/sec (ft/sec)

d Water depth, m (ft)

d,, Water depth, m (ft)

D(f,6) Angular spreading function dependent on wave frequency and direction
D(6) Angular spreading function dependent only on wave direction

e Constant, 2.7183

ff Wave frequency, sec™

5 Peak spectral frequency, sec™

g Gravitational acceleration, m/sec? (ft/sec?)

H Wave height, m (ft)
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s,long

‘W -

=

r,coast

h

S(N
S(5.6)
S(h)

T, long

P

7RV

Incident wave height, m (ft)

Energy-based, or zero-moment, estimate of significant wave height,
m (ft)

Significant wave height for wind waves and swell, m (ft)
Significant wave height for long (infragravity) wéves, m (ft)
V-1

Reflection coefficient of a solid boundary

Reflection coefficient of a solid boundary

Wavelength, m (ft)

Wavelength for waves at peak frequency, m (ft)

Unit normal vector directed into the solid region

Number of HARBD computational wave directions for spectral
approximation

Number of major peaks in wind wave and swell spectrum

Number of HARBD computational wave periods for spectral
approximation

Radial polar coordinate, m (ft)

Directional spreading parameter

Spectral energy density function dependent only on frequency
Spectral energy density function dependent on frequency and direction
Spectral energy density at frequency, f;

Wave period, sec

Peak spectral wave period for wind waves and swell, sec

Peak spectral wave period for long (infragravity) waves, sec
Horizontal velocity components, m/sec (ft/sec)

Weighting factor for k’th HARBD computational frequency
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w, Weighting factor for n’th HARBD computational direction
X,y Horizontal coordinates, m (ft)
J/] Dimensionless bottom friction coefficient

14 Spectral peak enhancement factor; phase shift between stress and flow
velocity

Ax Grid element dimension

€ Significant wave steepness
1M Mean water level reading at Back Basin gage, m (ft)
e Wave phase; wave direction
6, Primary wave direction, deg
g, Incident wave direction for wind waves and swell, deg
'y Wave number, m™ (ft™)
- A Complex bottom friction factor
s Constant, 3.1416
¢ Velocity potential
& Velocity potential of the scattered wave
17 Angular wave frequency, radians
v Horizontal gradient operator
7 Partial differentiation symbol
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